transforming-growth-factor-beta has been researched along with Hypopituitarism* in 2 studies
2 other study(ies) available for transforming-growth-factor-beta and Hypopituitarism
Article | Year |
---|---|
Loss of function BMP4 mutation supports the implication of the BMP/TGF-β pathway in the etiology of combined pituitary hormone deficiency.
Despite BMP4 signaling being critical to Rathke's pouch induction and maintenance during early stages of pituitary development, its implication in the etiology of combined pituitary hormone deficiency (CPHD) and other clinical presentations of congenital hypopituitarism has not yet been definitely demonstrated. We report here the first CPHD patient with a de novo pathogenic loss-of-function variant in BMP4. A 6-year-old boy, with macrocephaly, myopia/astigmatism, mild psychomotor retardation, anterior pituitary hypoplasia and ectopic posterior pituitary, clinically diagnosed with growth hormone deficiency, and central hypothyroidism, was referred for genetic analysis of CPHD. Targeted NGS analysis with a custom panel (n = 310 genes) identified a novel heterozygous de novo nonsense variant, NM_001202.5:c.794G > A, p.(Trp265*) in BMP4, which introduces a premature stop codon in the BMP4 pro-domain, impairing the transcription of the TGF-β mature peptide domain. Additional relevant variants in other genes implicated in pituitary development signaling pathways such as SMAD4 and E2F4 (BMP/TGF-pathway), ALMS1 (NOTCH-pathway), and TSHZ1 (Prokineticin-pathway), were also identified. Our results support the implication of the BMP/TGF-β signaling pathway in the etiology of CPHD and suggest that oligogenic contribution of additional inherited variants may modify the phenotypic expressivity of BMP4 pathogenic variants. Topics: Biomarkers; Bone Morphogenetic Protein 4; Child; Genetic Association Studies; Genetic Predisposition to Disease; Genetic Testing; Growth Charts; Heterozygote; Humans; Hypopituitarism; Loss of Function Mutation; Male; Phenotype; Signal Transduction; Transforming Growth Factor beta | 2019 |
1,25-dihydroxyvitamin D3-mediated transforming growth factor-beta release is impaired in cultured osteoblasts from patients with multiple pituitary hormone deficiencies.
To evaluate the osteoblastic function in patients with multiple pituitary hormone deficiencies (M-PHD) and with isolated growth hormone deficiency (I-GHD), bone cells were cultured and the effects of 10(-8) M 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) on parameters of cell proliferation, osteoblastic differentiation, and local paracrine regulation were measured. Three days of 1,25(OH)2D3 treatment increased alkaline phosphatase activity and osteocalcin release but inhibited [3H]thymidine incorporation in all cell cultures from patients as well as from controls. In addition, 1,25(OH)2D3 increased the release of both total and active transforming growth factor-beta (TGF-beta) in bone cells from controls by, respectively, 4.9- and 3.2-fold and in bone cells from I-GHD by 5.1- and 1.5-fold, respectively. However, in bone cells from M-PHD, the stimulation of total TGF-beta release was significantly lower (1.3-fold) than in control and I-GHD cells, and active TGF-beta release was not stimulated at all. One year of supplementation with human growth hormone did not improve this deficient TGF-beta release in bone cells from M-PHD. We conclude that cultured bone cells from I-GHD and M-PHD show a normal response to 1,25(OH)2D3 regarding cell proliferation and osteoblastic differentiation, which implicates a normal 1,25(OH)2D3-receptor function. In cells from controls and I-GHD, 1,25(OH)2D3 enhanced both total and active TGF-beta release. However, bone cells from M-PHD showed a deficient TGF-beta response to 1,25(OH)2D3. These results suggest that the regulation of TGF-beta production is a major paracrine factor involved in hypopituitarism. Topics: Adult; Aged; Aged, 80 and over; Alkaline Phosphatase; Analysis of Variance; Calcitriol; Cell Differentiation; Cell Division; Cells, Cultured; Child; Female; Humans; Hypopituitarism; Ilium; Isotope Labeling; Male; Middle Aged; Osteoblasts; Osteocalcin; Pituitary Hormones; Receptors, Calcitriol; Thymidine; Transforming Growth Factor beta | 1996 |