transforming-growth-factor-beta and Hypertrophy--Right-Ventricular

transforming-growth-factor-beta has been researched along with Hypertrophy--Right-Ventricular* in 14 studies

Other Studies

14 other study(ies) available for transforming-growth-factor-beta and Hypertrophy--Right-Ventricular

ArticleYear
PBI-4050 reduces pulmonary hypertension, lung fibrosis, and right ventricular dysfunction in heart failure.
    Cardiovascular research, 2020, 01-01, Volume: 116, Issue:1

    Heart failure with reduced ejection fraction (HFrEF) causes lung remodelling with myofibroblasts proliferation and fibrosis leading to a restrictive lung syndrome with pulmonary hypertension (PH) and right ventricular (RV) dysfunction. PBI-4050 is a first-in-class anti-fibrotic, anti-inflammatory, and anti-proliferative compound. The present study evaluated the therapeutic impact of PBI-4050 on PH in an HFrEF model.. HFrEF was induced after myocardial infarction (MI) in rats. Two weeks later, sham-operated and MI groups received PBI-4050 (200 mg/kg/day by gavage) or saline for 3 weeks. Animals were analysed according to infarct size as large (≥30% left ventricle) or medium MI (<30%). Large MI caused PH and RV hypertrophy (RVH) with a restrictive lung syndrome. PBI-4050 did not adversely affect left ventricular (LV) function but markedly reduced PH and RVH and improved RV dysfunction. PBI-4050 reduced lung remodelling and improved respiratory compliance with decreased lung fibrosis, alveolar wall cellular proliferation and α-smooth muscle actin expression. The increased expression of endothelin-1 (ET-1), transforming growth factor beta (TGF-β), interleukin-6 (IL-6) and of tissue inhibitor of metalloprotease-1 in the lungs from HFrEF were reduced with PBI-4050 therapy. Activation of isolated human lung fibroblasts (HLFs) to a myofibroblastic pro-fibrogenic phenotype was markedly reduced by PBI-4050. The fatty acid receptor GPR84 was increased in HFrEF lungs and in activated HLFs, and reduced by PBI-4050. GPR84 agonists activated fibrogenesis in HLFs and finally, PBI-4050 reduced ERK1/2 phosphorylation.. PBI-4050 reduces PH and RVH in HFrEF by decreasing lung fibrosis and remodelling. This novel agent decreases the associated restrictive lung syndrome and recovers RV function. A contributing mechanism involves reducing the activation of lung fibroblasts by IL-6, TGF-β, and ET-1 by antagonism of GPR84 and reduced ERK1/2 phosphorylation. PBI-4050 is a novel promising therapy for targeting lung remodelling in group II PH.

    Topics: Acetates; Animals; Cells, Cultured; Disease Models, Animal; Endothelin-1; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Fibrosis; Heart Failure; Heart Ventricles; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Interleukin-6; Lung; Male; Phosphorylation; Pulmonary Fibrosis; Rats, Wistar; Receptors, G-Protein-Coupled; Signal Transduction; Transforming Growth Factor beta; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling

2020
Smooth muscle cell-specific FoxM1 controls hypoxia-induced pulmonary hypertension.
    Cellular signalling, 2018, Volume: 51

    Forkhead box M1 (FoxM1) is a transcription factor that promotes cell proliferation by regulating a broad spectrum of genes that participate in cell cycle regulation, such as Cyclin B, CDC25B, and Aurora B Kinase. We have shown that hypoxia, a well-known stimulus for pulmonary hypertension (PH), induces FoxM1 in pulmonary artery smooth muscle cells (PASMC) in a HIF-dependent pathway, resulting in PASMC proliferation, while the suppression of FoxM1 prevents hypoxia-induced PASMC proliferation. However, the implications of FoxM1 in the development of PH remain less known.. We determined FoxM1 levels in the lung samples of idiopathic PAH (pulmonary arterial hypertension) (IPAH) patients and hypoxia-induced PH mice. We generated constitutive and inducible smooth muscle cell (SMC)-specific FoxM1 knockdown or knockout mice as well as FoxM1 transgenic mice which overexpress FoxM1, and exposed them to hypoxia (10% O. We showed that in hypertensive human lungs or mouse lungs, FoxM1 levels were elevated. Constitutive knockout of FoxM1 in mouse SMC caused early lethality, whereas constitutive knockdown of FoxM1 in mouse SMC prevented hypoxia-induced PH and PASMC proliferation. Inducible knockout of FoxM1 in SMC reversed hypoxia-induced pulmonary artery wall remodeling in existing PH. Overexpression of FoxM1 enhanced hypoxia-induced pulmonary artery wall remodeling and right ventricular hypertrophy in mice. Alteration of FoxM1 status did not affect hypoxia-induced hypoxia-inducible factor (HIF) activity in mice. Knockout of FoxM1 decreased PASMC proliferation and induced expression of SMC contractile proteins and TGF-β/Smad3 signaling.. Our studies provide clear evidence that altered FoxM1 expression in PASMC contributes to PH and uncover a correlation between Smad3-dependent signaling in FoxM1-mediated proliferation and de-differentiation of PASMC.

    Topics: Animals; Basic Helix-Loop-Helix Transcription Factors; Cell Proliferation; Cells, Cultured; Contractile Proteins; Disease Models, Animal; Female; Forkhead Box Protein M1; Gene Expression Regulation; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Pulmonary Artery; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta; Vascular Remodeling

2018
Nestin is a marker of lung remodeling secondary to myocardial infarction and type I diabetes in the rat.
    Journal of cellular physiology, 2015, Volume: 230, Issue:1

    Upregulation of the intermediate filament protein nestin was identified in a subpopulation of fibroblasts during reactive and reparative fibrosis and directly contributed to the enhanced proliferative phenotype. The present study tested the hypothesis that nestin was expressed in lung fibroblasts and the pattern of expression represented a distinct marker of pulmonary remodeling secondary to myocardial infarction and type I diabetes. Nestin((+)) fibroblasts were detected in rat lungs and a subpopulation exhibited a myofibroblast phenotype delineated by the co-expression of smooth muscle α-actin. In the lungs of myocardial infarcted rats, interstitial collagen content and nestin mRNA/protein levels were significantly increased despite the absence of secondary pulmonary hypertension, whereas smooth muscle α-actin protein expression was unchanged. Exposure of rat pulmonary fibroblasts to pro-fibrotic stimuli angiotensin II and transforming growth factor-β significantly increased nestin protein levels. In the lungs of type I diabetic rats, the absence of a reactive fibrotic response was associated with a significant downregulation of nestin mRNA/protein expression. Nestin was reported a target of miR-125b, albeit miR-125b levels were unchanged in pulmonary fibroblasts treated with pro-fibrotic stimuli. Nestin((+)) cells lacking smooth muscle α-actin/collagen staining were also identified in rodent lungs and a transgenic approach revealed that expression of the intermediate filament protein was driven by intron 2 of the nestin gene. The disparate regulation of nestin characterized a distinct pattern of pulmonary remodeling secondary to myocardial infarction and type I diabetes and upregulation of the intermediate filament protein in lung fibroblasts may have facilitated in part the reactive fibrotic response.

    Topics: Actins; Airway Remodeling; Angiotensin II; Animals; Biomarkers; Cell Differentiation; Collagen Type I; Diabetes Mellitus, Type 1; Fibroblasts; Heart Failure; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Male; MicroRNAs; Myocardial Contraction; Myocardial Infarction; Nestin; Pulmonary Fibrosis; Rats; Rats, Sprague-Dawley; RNA, Messenger; Streptozocin; Transforming Growth Factor beta

2015
A novel ACE2 activator reduces monocrotaline-induced pulmonary hypertension by suppressing the JAK/STAT and TGF-β cascades with restored caveolin-1 expression.
    Experimental lung research, 2015, Volume: 41, Issue:1

    Pulmonary hypertension (PH) is characterized by increased pressure in the pulmonary artery and right ventricular hypertrophy (RVH). Recently, angiotensin-converting enzyme 2 (ACE2), which converts angiotensin (Ang) II into Ang-(1-7), was shown to inhibit experimental PH. Here we identified a novel ACE2 activator and investigated how the compound reduced monocrotaline (MCT)-induced PH.. To induce PH, Sprague-Dawley rats were injected subcutaneously with MCT, followed by the continuous administration of NCP-2454, an ACE2 activator, using osmotic pumps. Pulmonary arterial compliance was monitored every week until 4 weeks post-injection (wpi). RVH and lung remodeling was evaluated using lung tissue at 4 wpi.. NCP-2454 upregulated the production of Ang-(1-7) when incubated with ACE2 and Ang II. Notably, a continuous infusion of NCP-2454 significantly improved pulmonary arterial compliance, right ventricular systolic pressure, and RVH in MCT-treated rats. Interestingly, NCP-2454 increased the relative expression of ACE2 and MAS mRNA in lung tissue, especially in MCT-treated rats. In addition, the compound inhibited the MCT-induced overexpression of transforming growth factor β, phosphorylation of signal transducer and activator of transcription-3 (STAT3), and interleukin-6 production. The compound also restored the expression of caveolin-1 (Cav-1), which negatively regulates the Janus kinase-STAT signaling cascade.. NCP-2454 prevented MCT-induced PH by suppressing intracellular inflammatory cascades, an upstream molecular change of which is the disruption of Cav-1 expression.

    Topics: Angiotensin-Converting Enzyme 2; Animals; Caveolin 1; Drug Evaluation, Preclinical; Enzyme Activation; Feedback, Physiological; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Janus Kinases; Male; Monocrotaline; Oxazoles; Peptidyl-Dipeptidase A; Pyrimidines; Rats, Sprague-Dawley; STAT Transcription Factors; Transforming Growth Factor beta

2015
The synergistic therapeutic effect of hepatocyte growth factor and granulocyte colony-stimulating factor on pulmonary hypertension in rats.
    Heart and vessels, 2014, Volume: 29, Issue:4

    Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary arterial pressure and vascular resistance. Despite advances in therapy for PAH, its treatment and prognosis remain poor. We aimed to investigate whether the transplantation of bone marrow mesenchymal stem cells (MSCs) overexpressing hepatocyte growth factor (HGF), alone or in combination with granulocyte colony-stimulating factor (G-CSF), attenuates the development of experimental monocrotaline (MCT)-induced PAH. Three weeks after MCT administration, rats were divided into the following groups: (1) untreated (PAH); (2) HGF treated; (3) MSCs administered; (4) HGF-MSCs treated; and (5) HGF-MSCs plus G-CSF treated. After 3 weeks, hemodynamic changes, histomorphology, and angiogenesis were evaluated. To elucidate the molecular mechanisms of vascular remodeling and angiogenesis, serum levels of transforming growth factor (TGF)-β and endothelin-1 (ET-1) were measured, and the gene and protein expression levels of vascular cell adhesion molecule-1 (VCAM-1) and matrix metalloproteinase-9 (MMP-9) were determined. Compared with the PAH, MSC, and G-CSF groups, the HGF and HGF+G-CSF groups exhibited significantly reduced right ventricular hypertrophy and mean pulmonary arterial pressure (P < 0.05). Histologically, vessel muscularization or thickening and collagen deposition were also significantly decreased (P < 0.05). The number of vessels in the HGF+G-CSF group was higher than that in the other groups (P < 0.05). The TGF-β and ET-1 concentrations in the plasma of pulmonary hypertensive rats were markedly lower in the HGF and HGF+G-CSF groups (P < 0.05). Furthermore, HGF induced the expression of VCAM-1, and HGF treatment together with G-CSF synergistically stimulated MMP-9 expression. Transplanted HGF-MSCs combined with G-CSF potentially offer synergistic therapeutic benefit for the treatment of PAH.

    Topics: Animals; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Endothelin-1; Genetic Therapy; Granulocyte Colony-Stimulating Factor; Hepatocyte Growth Factor; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Matrix Metalloproteinase 9; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Neovascularization, Physiologic; Pulmonary Artery; Rats, Sprague-Dawley; Recovery of Function; Time Factors; Transforming Growth Factor beta; Vascular Cell Adhesion Molecule-1; Vascular Remodeling

2014
Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload.
    The Journal of thoracic and cardiovascular surgery, 2012, Volume: 144, Issue:6

    Chronic right ventricular (RV) pressure overload results in pathologic RV hypertrophy and diminished RV function. Although aortic constriction has been shown to improve systolic function in acute RV failure, its effect on RV responses to chronic pressure overload is unknown.. Adjustable vascular banding devices were placed on the main pulmonary artery and descending aorta. In 5 animals (sham group), neither band was inflated. In 9 animals (PAB group), only the pulmonary arterial band was inflated, with adjustments on a weekly basis to generate systemic or suprasystemic RV pressure at 28 days. In 9 animals, both pulmonary arterial and aortic devices were inflated (PAB + AO group), the pulmonary arterial band as for the PAB group and the aortic band adjusted to increase proximal systolic blood pressure by approximately 20 mm Hg. Effects on the functional performance were assessed 5 weeks after surgery by conductance catheters, followed by histologic and molecular assessment.. Contractile performance was significantly improved in the PAB + AO group versus the PAB group for both ventricles. Relative to sham-operated animals, both banding groups showed significant differences in myocardial histologic and molecular responses. Relative to the PAB group, the PAB + AO group showed significantly decreased RV cardiomyocyte diameter, decreased RV collagen content, and reduced RV expression of endothelin receptor type B, matrix metalloproteinase 9, and transforming growth factor β genes.. Aortic constriction in an experimental model of chronic RV pressure overload not only resulted in improved biventricular systolic function but also improved myocardial remodeling. These data suggest that chronically increased left ventricular afterload leads to a more physiologically hypertrophic response in the pressure-overloaded RV.

    Topics: Animals; Aorta; Arterial Pressure; Chronic Disease; Collagen; Collagenases; Connective Tissue Growth Factor; Constriction; Disease Models, Animal; Endothelin-1; Familial Primary Pulmonary Hypertension; Heart Failure; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Myocardial Contraction; Myocardium; Pulmonary Artery; Rabbits; Receptors, Endothelin; Recovery of Function; Time Factors; Transforming Growth Factor beta; Ventricular Function, Left; Ventricular Function, Right; Ventricular Pressure; Ventricular Remodeling

2012
Hypoxia-induced inhibition of lung development is attenuated by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone.
    American journal of physiology. Lung cellular and molecular physiology, 2011, Volume: 301, Issue:1

    Hypoxia enhances transforming growth factor-β (TGF-β) signaling, inhibiting alveolar development and causing abnormal pulmonary arterial remodeling in the newborn lung. We hypothesized that, during chronic hypoxia, reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling may contribute to, or be caused by, excessive TGF-β signaling. To determine whether PPAR-γ was reduced during hypoxia, C57BL/6 mice were exposed to hypoxia from birth to 2 wk and evaluated for PPAR-γ mRNA and protein. To determine whether rosiglitazone (RGZ, a PPAR-γ agonist) supplementation attenuated the effects of hypoxia, mice were exposed to air or hypoxia from birth to 2 wk in combination with either RGZ or vehicle, and measurements of lung histology, function, parameters related to TGF-β signaling, and collagen content were made. To determine whether excessive TGF-β signaling reduced PPAR-γ, mice were exposed to air or hypoxia from birth to 2 wk in combination with either TGF-β-neutralizing antibody or vehicle, and PPAR-γ signaling was evaluated. We observed that hypoxia reduced PPAR-γ mRNA and protein, in association with impaired alveolarization, increased TGF-β signaling, reduced lung compliance, and increased collagen. RGZ increased PPAR-γ signaling, with improved lung development and compliance in association with reduced collagen and TGF-β signaling. However, no reduction was noted in hypoxia-induced pulmonary vascular remodeling. Inhibition of hypoxia-enhanced TGF-β signaling increased PPAR-γ signaling. These results suggest that hypoxia-induced inhibition of lung development is associated with a mutually antagonistic relationship between reduced PPAR-γ and increased TGF-β signaling. PPAR-γ agonists may be of potential therapeutic significance in attenuating TGF-β signaling and improving alveolar development.

    Topics: Airway Remodeling; Animals; Animals, Newborn; Antibodies, Neutralizing; Chronic Disease; Collagen; Hypertrophy, Right Ventricular; Hypoxia; Lung; Mice; Mice, Inbred C57BL; PPAR gamma; Pulmonary Alveoli; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta

2011
Gene delivery of cytochrome p450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats.
    American journal of respiratory cell and molecular biology, 2010, Volume: 43, Issue:6

    Pulmonary arterial hypertension (PAH) is a life-threatening disease that leads to progressive pulmonary hypertension, right heart failure, and death. Endothelial dysfunction and inflammation were implicated in the pathogenesis of PAH. Epoxyeicosatrienoic acids (EETs), products of the cytochrome P450 epoxygenase metabolism of arachidonic acid, are potent vasodilators that possess anti-inflammatory and other protective properties in endothelial cells. We investigated whether gene delivery with the human cytochrome P450 epoxygenase 2J2 (CYP2J2) ameliorates monocrotaline (MCT)-induced pulmonary hypertension in rats. Significant pulmonary hypertension developed 3 weeks after the administration of MCT, but gene therapy with CYP2J2 significantly attenuated the development of pulmonary hypertension and pulmonary vascular remodeling, without causing changes in systemic arterial pressure or heart rate. These effects were associated with increased pulmonary endothelial NO synthase (eNOS) expression and its activity, inhibition of inflammation in the lungs, and transforming growth factor (TGF)-β/type II bone morphogenetic protein receptor (BMPRII)-drosophila mothers against decapentaplegic proteins (Smads) signaling. Collectively, these data suggest that gene therapy with CYP2J2 may have potential as a novel therapeutic approach to this progressive and oftentimes lethal disorder.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Bone Morphogenetic Protein Receptors, Type II; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Endothelial Cells; Gene Transfer Techniques; Genetic Therapy; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Interleukin-10; Interleukin-6; Monocrotaline; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type III; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Platelet-Derived Growth Factor; Signal Transduction; Survival Analysis; Tissue Extracts; Transforming Growth Factor beta

2010
Interleukin-6 overexpression induces pulmonary hypertension.
    Circulation research, 2009, Jan-30, Volume: 104, Issue:2

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

    Topics: Animals; Apoptosis; Arterioles; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Blood Pressure; Cell Proliferation; Chronic Disease; Endothelial Cells; Hyperplasia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Inhibitor of Apoptosis Proteins; Interleukin-6; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microtubule-Associated Proteins; Mitogen-Activated Protein Kinases; Muscle, Smooth, Vascular; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-myc; Pulmonary Artery; Repressor Proteins; Survivin; Time Factors; Transforming Growth Factor beta; Up-Regulation; Vascular Endothelial Growth Factor A; Vascular Resistance; Ventricular Function, Right; Ventricular Pressure

2009
Effects of olmesartan medoxomil as an angiotensin II-receptor blocker in chronic hypoxic rats.
    European journal of pharmacology, 2005, Dec-28, Volume: 528, Issue:1-3

    We established a rat chronic alveolar hypoxia in vivo model to evaluate the efficacy against hypoxic pulmonary hypertension of a new angiotensin II-receptor I blocker, olmesartan medoxomil. Three groups of rats were established: rats exposed for 2-6 weeks to 10% oxygen atmosphere in a normobaric chamber; hypoxic rats treated with olmesartan medoxomil oral administration (5 mg/day) every day; and control rats fed in a normoxic condition. After hypoxia treatment, the presence, etiology and severity of pulmonary hypertension, was echocardiographically evaluated, and expressions of brain natriuretic peptide (BNP), transforming growth factor (TGF-beta) and endothelin-1 genes measured by both immunohistochemical assay and real-time polymerase chain reaction. Olmesartan medoxomil significantly reduced the induction of hypoxic cor pulmonale not only on echocardiographical observations but also in BNP, TGF-beta and endothelin gene expressions in molecular studies. However, systolic blood pressure was independent of olmesartan medoxomil. The present study clearly indicates that the angiotensin II-type I-receptor blocker olmesartan medoxomil has significant efficacy for hypoxic cor pulmonale.

    Topics: Administration, Oral; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Collagen; Disease Models, Animal; Echocardiography; Endothelins; Heart; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Imidazoles; Lung; Male; Myocardium; Natriuretic Peptide, Brain; Olmesartan Medoxomil; Pulmonary Artery; Pulmonary Heart Disease; Rats; Rats, Wistar; RNA, Messenger; Tetrazoles; Transforming Growth Factor beta

2005
Estrogen and enalapril attenuate the development of right ventricular hypertrophy induced by monocrotaline in ovariectomized rats.
    Journal of Korean medical science, 2003, Volume: 18, Issue:5

    The present study evaluated the importance of ovarian functions and the renin-angiotensin system in the progression of the right ventricular (RV) hypertrophy. Female Sprague-Dawley rats were bilaterally ovariectomized (Ovx) and injected with monocrotaline (MCT, 60 mg/kg, sc). Four weeks after MCT-treatment, only the male and Ovx female rats showed marked RV hypertrophy. The hypertrophied RV of the male-MCT and Ovx-MCT rats exhibited remarkably elevated renin mRNA levels. Gene expression levels of angiotensinogen, TGF-beta1, and endothelin-1 in the hypertrophied RV also increased, but to the less degree than did the renin mRNA. To investigate beneficial effects of estrogen or enalapril on progression of the pulmonary hypertension and RV hypertrophy, histological changes of the lung and heart were examined. Sham-MCT female rats showed histological changes indicating pulmonary hypertension without RV hypertrophy. In contrast, Ovx-MCT rats showed marked RV hypertrophy with pathological changes, denoting severe pulmonary and myocardial injuries. Estrogen-or enalapril-treated Ovx-MCT rats did not show RV hypertrophy, and showed remarkably ameliorated ultrastructural changes in the lung and RV. These results from this rat model suggest that both estrogen and inhibition of the renin-angiotensin system have protective functions against the development of the pulmonary hypertension and cardiac remodeling.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Angiotensinogen; Animals; Body Weight; Densitometry; Disease Progression; Enalapril; Endothelin-1; Estrogens; Female; Hypertrophy, Right Ventricular; Male; Microscopy, Electron; Monocrotaline; Ovariectomy; Rats; Rats, Sprague-Dawley; Renin; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; Sex Factors; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ventricular Remodeling

2003
Enhanced gene expression of renin-angiotensin system, TGF-beta1, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy.
    Pharmacological research, 2001, Volume: 43, Issue:3

    It has been suggested that various vasoactive substances and growth factors are involved in left-ventricular myocardial hypertrophy and failure. However, limited data are available on the role of humoral factors involved in right-ventricular (RV) hypertrophy. To examine implications of humoral factors involved in the development of RV hypertrophy, altered mRNA expressions of the renin-angiotensin system (RAS), transforming growth factor (TGF)- beta1, endothelin-1 and nitric oxide synthase (NOS) were investigated in monocrotaline (MCT)-induced pulmonary hypertensive rats. Male Sprague-Dawley rats were treated with MCT (60 mg x kg(-1), s.c.) to induce a selective RV hypertrophy. Three or 6 weeks later, the heart was removed to determine the tissue gene expressions in the right and left ventricles (LV) by reverse transcription-polymerase chain reaction due to the relatively low mRNA expression levels of the RAS components in the ventricle (n= 6 in each group). MCT-treated rats showed a selective RV hypertrophy at weeks 3 and 6 of MCT treatment (the ratios of RV/body weight were 1.5- and 2.2-fold higher than the controls, respectively). Levels of renin and angiotensinogen mRNAs in the hypertrophied RV were significantly increased at both weeks 3 and 6 of MCT treatment. The angiotensin-converting enzyme mRNA level also increased approximately 2-fold at week 3. In contrast, RAS component mRNAs in the LV were not significantly altered by MCT treatment, except for a 1.8-fold increase of angiotensinogen mRNA at week 3. The expression of Ang II receptors, either AT1A or AT1B, was not significantly altered by MCT treatment. Furthermore, MCT treatment significantly increased TGF- beta1 mRNA levels in the RV at weeks 3 and 6, while it did not significantly affect them in the LV. Endothelin-1 mRNA expression was significantly higher in the RV at week 3, but was normalized at week 6 of MCT treatment. The gene expression of the endothelial constitutive isoform of NOS was increased in the RV at weeks 3 and 6, but not in the LV. Elevated gene expression of local RAS, along with TGF- beta1 and endothelin-1 in the present study may contribute to the development of RV hypertrophy. On the contrary, an enhanced ecNOS expression may be a mechanism counteracting the hypertrophy.

    Topics: Animals; Disease Models, Animal; Endothelin-1; Gene Expression; Hypertrophy, Right Ventricular; Male; Monocrotaline; Nitric Oxide Synthase; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Transforming Growth Factor beta; Transforming Growth Factor beta1

2001
Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats.
    Journal of molecular and cellular cardiology, 2001, Volume: 33, Issue:6

    Extensive myocardial remodeling occurs after transmural myocardial infarction (MI). The infarcted myocardium is being replaced by scar tissue after gradual resorption of the necrotic tissue. The remodeling process involves both synthesis and degradation of collagens as major components of the extracellular matrix (ECM). In the present study we have analyzed the time-dependent changes of the processes related to this fibrosis in the infarct area and in the non-infarcted left ventricle (LV) six hours to 82 days after occlusion of the left anterior descending coronary artery (LAD) in rats. We also examined whether changes occurred in the expression pattern of the transforming growth factor (TGF) beta isoforms, since this cytokine is known as powerful inductor of fibrosis. Elevation in colligin expression preceded the pronounced increase in mRNA expression of both type I and type III collagen after MI from day three onwards. The maximal increase in colligin protein in the infarct area coincided with the most pronounced expression of collagen I and collagen III mRNA expression. Also, the expression and activity of matrix metalloproteinases (MMPs) and of tissue inhibitor of matrix metalloproteinase (TIMP)-2 mRNA were increased predominantly in the infarct area. TGF beta(1)and TGF-beta(2)expression increased within the first days after MI, whereas TGF-beta(3)expression was elevated predominantly in the infarct area. This pronounced increase in TGF-beta(3)persisted up to 82 days and correlated positively with the parameters of ECM metabolism. Thus, the scar formation is an ongoing dynamic process in which TGF-beta(3)seems to play an active role in the complex ventricular remodeling.

    Topics: Animals; Arteries; Carrier Proteins; Collagen; Coronary Vessels; Extracellular Matrix; Female; Gelatin; Gene Expression; Glycoproteins; Hemodynamics; Hypertrophy, Right Ventricular; Matrix Metalloproteinase 2; Matrix Metalloproteinase 8; Matrix Metalloproteinase 9; Myocardial Infarction; Myocardium; Protein Isoforms; Rats; Rats, Sprague-Dawley; RNA, Messenger; Tissue Inhibitor of Metalloproteinase-2; Transforming Growth Factor beta; Transforming Growth Factor beta1; Transforming Growth Factor beta2; Transforming Growth Factor beta3; Ventricular Dysfunction, Left; Ventricular Dysfunction, Right

2001
Markers of cardiac hypertrophy.
    Annals of the New York Academy of Sciences, 1995, Mar-27, Volume: 752

    Topics: Analysis of Variance; Animals; Atmospheric Pressure; Atrial Natriuretic Factor; Biomarkers; Blotting, Northern; Cytokines; Hypertrophy, Right Ventricular; Hypoxia; Macrophage Colony-Stimulating Factor; Mice; Myocardium; Rats; Time Factors; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

1995