transforming-growth-factor-beta and Enterovirus-Infections

transforming-growth-factor-beta has been researched along with Enterovirus-Infections* in 3 studies

Other Studies

3 other study(ies) available for transforming-growth-factor-beta and Enterovirus-Infections

ArticleYear
Rhinovirus Suppresses TGF-β-GARP Presentation by Peripheral NK Cells.
    Cells, 2022, 12-28, Volume: 12, Issue:1

    Asthma is a chronic airway disease whose exacerbations are often triggered by rhinovirus infection. TGF-β1 induces rhinovirus replication in infected cells. Moreover, TGF-β1 is a pleiotropic mediator that is produced by many immune cells in the latent, inactive form bound to the latency-associated peptide (LAP) and to the transmembrane protein glycoprotein A repetitions predominant (GARP). In this study we wanted to investigate the effect of rhinovirus infection on the TGF-β secretion and the downstream signaling via TGF-βRI/RII in peripheral blood mononuclear cells from control and asthmatic patients after rhinovirus infection ex vivo. Here, we found a significant upregulation of TGF-βRII in untouched PBMCs of asthmatics as well as a suppression of TGF-β release in the rhinovirus-infected PBMC condition. Moreover, consistent with an effect of TGF-β on Tregs, PBMCs infected with RV induced Tregs, and TGF-βRII directly correlated with RV1b mRNA. Finally, we found via flow cytometry that NK cells expressed less GARP surface-bound TGF-β, while cytokine-producing NK

    Topics: Asthma; Enterovirus Infections; Glycoproteins; Humans; Killer Cells, Natural; Leukocytes, Mononuclear; Membrane Proteins; Rhinovirus; Transforming Growth Factor beta; Transforming Growth Factor beta1

2022
Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis.
    Journal of molecular medicine (Berlin, Germany), 2008, Volume: 86, Issue:1

    Dilated cardiomyopathy (DCM) as a consequence of viral myocarditis is a worldwide cause of morbidity and death. The deposition of matrix proteins, such as collagen, in the course of ongoing viral myocarditis results in cardiac remodeling and finally in cardiac fibrosis, the hallmark of DCM. To identify mediators of virus-induced cardiac fibrosis, microarray analysis was conducted in a murine model of chronic coxsackievirus B3 (CVB3) myocarditis. By this attempt, we identified connective tissue growth factor (CTGF) as a novel factor highly expressed in infected hearts. Further investigations by quantitative reverse transcription polymerase chain reaction and Western blot analysis confirmed a strong induction of cardiac CTGF expression in the course of CVB3 myocarditis. By in situ hybridization and immunohistochemistry, basal CTGF messenger ribonucleic acid (mRNA) and protein expression were confined in noninfected control hearts mainly to endothelial cells, whereas in CVB3-infected hearts, also numerous fibroblasts were found to express CTGF. Regulation of CTGF is known to be basically mediated by transforming growth factor (TGF)-beta. In the course of CVB3 myocarditis, CTGF upregulation coincided with increased cardiac TGF-beta and procollagen type I mRNA expression, preceding the formation of fibrotic lesions. In in vitro experiments, we found that downregulation of CVB3 replication by means of small interfering RNAs (siRNAs) reverses the upregulation of CTGF mRNA expression. In contrast, downregulation of CTGF by siRNA molecules did not significantly reduce viral load, indicating that CTGF is not essential for CVB3 life cycle. The significantly enhanced transcript levels of TGF-beta, CTGF, and procollagen type I in cultivated CVB3-infected primary cardiac fibroblasts substantiate the role of fibroblasts as a relevant cell population in cardiac remodeling processes. We conclude that CTGF is a crucial molecule in the development of fibrosis in ongoing enteroviral myocarditis. Thus, downregulation of cardiac CTGF expression may open novel therapeutic approaches counteracting the development of cardiac fibrosis and subsequent heart muscle dysfunction.

    Topics: Animals; Collagen Type I; Connective Tissue Growth Factor; Cytokines; Disease Models, Animal; Endothelial Cells; Enterovirus Infections; Fibroblasts; Mice; Myocarditis; Myocardium; RNA, Messenger; RNA, Small Interfering; Transforming Growth Factor beta

2008
Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart.
    The American journal of pathology, 2004, Volume: 165, Issue:6

    Inflammatory fibrosis is a characteristic feature of myocarditis, dilated cardiomyopathy (DCM), and congestive heart failure. Th1-type immune responses, mediated by interleukin (IL)-12-induced interferon (IFN)-gamma, are believed to exacerbate autoimmune diseases including myocarditis. In this study, we examined the effect of IL-12R beta 1 and IFN-gamma deficiency on the development of chronic CB3-induced myocarditis using knockout mice. We found increased chronic CB3-induced myocarditis (14.1 to 43.1%, P < 0.001); pericarditis (1.5 to 7.6%, P < 0.001); fibrosis (9.7 to 27.4%, P < 0.05); and the profibrotic cytokines transforming growth factor-beta(1), IL-1 beta, and IL-4 in the hearts of IFN-gamma-deficient mice. All mice infected with CB3 developed DCM, but IFN-gamma-deficient mice developed a fibrous, adhesive pericarditis associated with increased numbers of degranulating mast cells (MCs) in the pericardium (26.6 to 45.9%, P < 0.01), increased histamine levels (716 to 1930 ng/g of heart, P < 0.01), and reduced survival (100 to 43%). In contrast, IL-12R beta 1 deficiency did not significantly alter the development of chronic myocarditis. Thus, IFN-gamma protects against the development of severe chronic myocarditis, pericarditis, and DCM after CB3 infection by reducing MC degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta(1), IL-1 beta, and IL-4 in the heart.

    Topics: Animals; Cardiomyopathy, Dilated; Cell Degranulation; Chronic Disease; Enterovirus B, Human; Enterovirus Infections; Heart; Histamine; Interferon-gamma; Interleukin-1; Interleukin-4; Mast Cells; Mice; Mice, Inbred BALB C; Mice, Knockout; Myocarditis; Myocardium; Receptors, Interleukin; Receptors, Interleukin-12; Transforming Growth Factor beta; Transforming Growth Factor beta1

2004