transforming-growth-factor-beta and Cholera

transforming-growth-factor-beta has been researched along with Cholera* in 1 studies

Other Studies

1 other study(ies) available for transforming-growth-factor-beta and Cholera

ArticleYear
Oral administration of a recombinant cholera toxin B subunit promotes mucosal healing in the colon.
    Mucosal immunology, 2017, Volume: 10, Issue:4

    Cholera toxin B subunit (CTB) is a component of a licensed oral cholera vaccine. However, CTB has pleiotropic immunomodulatory effects whose impacts on the gut are not fully understood. Here, we found that oral administration in mice of a plant-made recombinant CTB (CTBp) significantly increased several immune cell populations in the colon lamina propria. Global gene expression analysis revealed that CTBp had more pronounced impacts on the colon than the small intestine, with significant activation of TGFβ-mediated pathways in the colon epithelium. The clinical relevance of CTBp-induced impacts on colonic mucosa was examined. In a human colon epithelial model using Caco2 cells, CTBp, but not the non-GM1-binding mutant G33D-CTBp, induced TGFβ-mediated wound healing. In a dextran sodium sulfate (DSS) acute colitis mouse model, oral administration of CTBp protected against colon mucosal damage as manifested by mitigated body weight loss, decreased histopathological scores, and blunted escalation of inflammatory cytokine levels while inducing wound healing-related genes. Furthermore, biweekly oral administration of CTBp significantly reduced disease severity and tumorigenesis in the azoxymethane/DSS model of ulcerative colitis and colon cancer. Altogether, these results demonstrate CTBp's ability to enhance mucosal healing in the colon, highlighting its potential application in ulcerative colitis therapy besides cholera vaccination.

    Topics: Administration, Oral; Animals; Azoxymethane; Caco-2 Cells; Cholera; Cholera Toxin; Cholera Vaccines; Colitis, Ulcerative; Colon; Colonic Neoplasms; Dextran Sulfate; Disease Models, Animal; Female; Humans; Mice; Mice, Inbred C57BL; Mucous Membrane; Signal Transduction; Transforming Growth Factor beta; Wound Healing

2017