transforming-growth-factor-beta and Capsule-Opacification

transforming-growth-factor-beta has been researched along with Capsule-Opacification* in 10 studies

Reviews

2 review(s) available for transforming-growth-factor-beta and Capsule-Opacification

ArticleYear
Roles of TGF β and FGF Signals in the Lens: Tropomyosin Regulation for Posterior Capsule Opacity.
    International journal of molecular sciences, 2018, Oct-09, Volume: 19, Issue:10

    Transforming growth factor (TGF) β and fibroblast growth factor (FGF) 2 are related to the development of posterior capsule opacification (PCO) after lens extraction surgery and other processes of epithelial⁻mesenchymal transition (EMT). Oxidative stress seems to activate TGF β1 largely through reactive oxygen species (ROS) production, which in turn alters the transcription of several survival genes, including lens epithelium-cell derived growth factor (LEDGF). Higher ROS levels attenuate LEDGF function, leading to down-regulation of peroxiredoxin 6 (Prdx6). TGF β is regulated by ROS in Prdx6 knock-out lens epithelial cells (LECs) and induces the up-regulation of tropomyosins (Tpms) 1/2, and EMT of LECs. Mouse and rat PCO are accompanied by elevated expression of Tpm2. Further, the expression of Tpm1/2 is induced by TGF β2 in LECs. Importantly, we previously showed that TGF β2 and FGF2 play regulatory roles in LECs in a contrasting manner. An injury-induced EMT of a mouse lens as a PCO model was attenuated in the absence of Tpm2. In this review, we present findings regarding the roles of TGF β and FGF2 in the differential regulation of EMT in the lens. Tpms may be associated with TGF β2- and FGF2-related EMT and PCO development.

    Topics: Animals; Biomarkers; Capsule Opacification; Cataract; Epithelial-Mesenchymal Transition; Extracellular Matrix; Fibroblast Growth Factors; Gene Expression Regulation; Gene Knockdown Techniques; Humans; Lens, Crystalline; Mice; Peroxiredoxin VI; Reactive Oxygen Species; Signal Transduction; Transforming Growth Factor beta; Tropomyosin; Wound Healing

2018
Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.
    Experimental eye research, 2016, Volume: 142

    Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneratio

    Topics: Capsule Opacification; Cataract Extraction; Cell Differentiation; Cell Proliferation; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Intracellular Signaling Peptides and Proteins; Lens, Crystalline; MAP Kinase Signaling System; Receptor Protein-Tyrosine Kinases; Signal Transduction; Transforming Growth Factor beta; Wnt Signaling Pathway

2016

Other Studies

8 other study(ies) available for transforming-growth-factor-beta and Capsule-Opacification

ArticleYear
ErbBs in Lens Cell Fibrosis and Secondary Cataract.
    Investigative ophthalmology & visual science, 2023, Jul-03, Volume: 64, Issue:10

    TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function.. DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions.. Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor.. Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.

    Topics: Capsule Opacification; Cataract; Epithelial Cells; Fibrosis; Humans; Lapatinib; Ligands; Transforming Growth Factor beta

2023
The local wound environment is a key determinant of the outcome of TGFβ signaling on the fibrotic response of CD44
    Experimental eye research, 2021, Volume: 213

    The cytokine transforming growth factor beta (TGFβ) has a role in regulating the normal and pathological response to wound healing, yet how it shifts from a pro-repair to a pro-fibrotic function within the wound environment is still unclear. Using a clinically relevant ex vivo post-cataract surgery model that mimics the lens fibrotic disease posterior capsule opacification (PCO), we investigated the influence of two distinct wound environments on shaping the TGFβ-mediated injury response of CD44

    Topics: Actins; Animals; Blotting, Western; Capsule Opacification; Cataract Extraction; Cell Proliferation; Chick Embryo; Collagen Type I; Disease Models, Animal; Fibronectins; Fibrosis; Hyaluronan Receptors; Imidazoles; Integrin alphaVbeta3; Microscopy, Fluorescence; Myofibroblasts; Posterior Capsule of the Lens; Postoperative Complications; Pyrazoles; Pyrroles; Quinoxalines; Receptor, Transforming Growth Factor-beta Type I; Signal Transduction; Transforming Growth Factor beta; Wound Healing

2021
Moderate oxidative stress promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways.
    Molecular and cellular biochemistry, 2021, Volume: 476, Issue:3

    The epithelial-mesenchymal transition (EMT) plays a significant role in fibrosis and migration of lens epithelial cells (LECs), and eventually induces posterior capsule opacification (PCO). In the past, it was generally believed that the TGF-β/Smad pathway regulates lens EMT. A recent study found that attenuated glutathione level promotes LECs EMT via the Wnt/β-catenin pathway, which suggests a more complex pathogenesis of PCO. To test the hypothesis, we used the mouse cataract surgery PCO model and tested both canonical Wnt/β-catenin and TGF-β/Smad signaling pathways. The results showed that both TGF-β/Smad and Wnt/β-catenin pathways were activated during the lens capsule fibrosis. Compared with the freshly isolated posterior capsule, the expression level of phosphorylated Smad2 was highest at day3 and then slightly decreased, but the expression level of Wnt10a gradually increased from day0 to day7. It shows that these two pathways are involved in the lens epithelium's fibrotic process and may play different roles in different periods. Subsequently, we established oxidative stress-induced EMT model in primary porcine lens epithelial cells and found that both the TGF-β/Smad and Wnt/β-catenin pathways were activated. Further study suggests that block Wnt/β-catenin pathway using XAV939 alone or block TGF-β/Smad pathway using LY2109761 could partially block pLECs fibrosis, but blocking Wnt/β-catenin and TGF-β/Smad pathway using combined XAV939 and LY2109761 could completely block pLECs fibrosis. In conclusion, this study demonstrates that both TGF-β/Smad and canonical Wnt/β-catenin pathways play a significant role in regulating epithelial-mesenchymal transformation of lens epithelial cells but might be in a different stage.

    Topics: Animals; Antioxidants; beta Catenin; Capsule Opacification; Cataract; Cell Proliferation; Cell Survival; Disease Models, Animal; Epithelial Cells; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Lens, Crystalline; Mice; Oxidative Stress; Oxygen; Pyrazoles; Pyrroles; Swine; Transforming Growth Factor beta; Transforming Growth Factor beta1; Tropicamide; Wnt Signaling Pathway

2021
Fibronectin has multifunctional roles in posterior capsular opacification (PCO).
    Matrix biology : journal of the International Society for Matrix Biology, 2020, Volume: 90

    Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.

    Topics: Animals; Bone Morphogenetic Proteins; Capsule Opacification; Cataract Extraction; Disease Models, Animal; Extracellular Matrix; Fibronectins; Fibrosis; Gene Expression Profiling; Gene Expression Regulation; Gene Knockout Techniques; Mice; Sequence Analysis, RNA; Signal Transduction; Transforming Growth Factor beta

2020
TGF-β regulation of microRNA miR-497-5p and ocular lens epithelial cell mesenchymal transition.
    Science China. Life sciences, 2020, Volume: 63, Issue:12

    The purpose of this study was to investigate the role of a human lens microRNA (miR-497-5p) in regulating epithelialmesenchymal transition (EMT) under the control of transforming growth factor beta (TGF-β). A microRNA array was used to evaluate the microRNA profiles of untreated and TGF-β-treated human lens epithelial cells in culture. This showed that TGF-β treatment led to the upregulation of 96 microRNAs and downregulation of 39 microRNAs. Thirteen microRNAs were predicted to be involved in the pathogenesis of posterior capsule opacification (PCO). Meanwhile, overexpression of miR-497-5p suppressed cell proliferation and EMT 48 h post-transfection, and inhibition of miR-497-5p accelerated cell proliferation and EMT. Treatment with TGF-β inhibited the expression of miR-497-5p, but not cell proliferation. miR-497-5p was also found to regulate the level of CCNE1 and FGF7, which are reported to be actively involved in EMT. CCNE1 and FGF7 were bona fide targets of miR-497-5p. The results suggest that miR-497-5p participates in the direct regulation of lens epithelial cell EMT and is regulated by TGF-β. miR-497-5p may be a novel target for PCO therapy.

    Topics: Capsule Opacification; Cell Line; Cell Proliferation; Cyclin E; Epithelial Cells; Epithelial-Mesenchymal Transition; Fibroblast Growth Factor 7; Gene Expression Regulation; Humans; Lens, Crystalline; MicroRNAs; Oncogene Proteins; Transforming Growth Factor beta

2020
The roles of αV integrins in lens EMT and posterior capsular opacification.
    Journal of cellular and molecular medicine, 2014, Volume: 18, Issue:4

    Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α-smooth muscle actin (α-SMA)-expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β-subunits β1, β5, β6, β8 are up-regulated concomitant with α-SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up-regulated the expression of α-SMA, β1-integrin, fibronectin, tenascin-C and transforming growth factor beta (TGF-β)-induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up-regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF-β activation as αV integrin null lenses do not exhibit detectable SMAD-3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF-β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.

    Topics: Actins; Animals; Capsule Opacification; Cataract Extraction; Cell Proliferation; Epithelial Cells; Epithelial-Mesenchymal Transition; Integrin alphaV; Lens Capsule, Crystalline; Mice; Myofibroblasts; Smad3 Protein; Transforming Growth Factor beta; Wound Healing

2014
Effects of a novel DNA methyltransferase inhibitor Zebularine on human lens epithelial cells.
    Molecular vision, 2012, Volume: 18

    Posterior capsular opacification (PCO) is a common long-term complication of modern cataract surgery. We have shown that Zebularine, an inhibitor of DNA methylation, suppresses transforming growth factor-β (TGFβ)-induced lens epithelial cells (LECs)-myofibroblasts transdifferentiation. The purpose of this study is to evaluate the role that Zebularine plays in the inhibition of PCO pathogenesis, including its effect on attachment, migration, and proliferation of LECs in vitro.. A tetrazolium dye-reduction assay (MTT test) was performed to determine cell proliferation. Cell attachment was assessed by modified MTT test. Migration was determined by the transwell method after incubation of LECs with Zebularine. The effect of Zebularine on DNA-methyltransferase 1 (DNMT1), phospho-p44/42 Map Kinase, and protein kinase B (Akt) were analyzed by western blot.. Zebularine was an effective inhibitor of human LEC proliferation, attachment, and migration in vitro. A Zebularine concentration of 100 μM accounted for the following: inhibition of cell proliferation of 57.2%, reduction in cell attachment to 29.6%, and inhibition of cell migration of 58.9%. All effects were dose dependent. Zebularine treatment resulted in dose-dependent decreases of DNMT1, phosphorylated p44/42 MAP Kinase, and phosphorylated Akt.. Zebularine is capable of inhibiting the crucial cellular events in PCO pathogenesis in vitro. Zebularine acts through the inhibition of DNMT1, and it consequently down regulation of the expression of proliferative and survival genes that relate to pathogenesis of PCO. These findings suggest that Zebularine may become a therapeutic approach for the prevention of PCO.

    Topics: Capsule Opacification; Cell Adhesion; Cell Movement; Cell Proliferation; Cell Transdifferentiation; Cells, Cultured; Cytidine; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Enzyme Inhibitors; Epithelial Cells; Gene Expression Regulation; Humans; Lens Capsule, Crystalline; Mitogen-Activated Protein Kinase 3; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Transforming Growth Factor beta

2012
Zebularine suppresses TGF-beta-induced lens epithelial cell-myofibroblast transdifferentiation by inhibiting MeCP2.
    Molecular vision, 2011, Volume: 17

    Posterior capsular opacification (PCO) is a common long-term complication of modern cataract surgery. Remnant lens epithelial cells (LECs) undergo a myofibroblast transdifferentiation that is thought to be the initial step of PCO pathogenesis. The purpose of this study is to determine the effects of zebularine on transforming growth factor-β (TGFβ)-induced, LEC-myofibroblast transdifferentiation.. The expression levels of methyl CpG binding protein 2 (MeCP2) and α-smooth muscle actin (α-SMA) in human PCO membranes were evaluated by confocal microscopy. The role that MeCP2 played in TGFβ2-induced α-SMA expression was analyzed by western blotting both before and after MeCP2 knockdown with MeCP2-specific siRNA. The effect of zebularine on MeCP2 expression was analyzed over time using a variety of dosages. The effect of zebularine on TGFβ2-induced α-SMA expression was determined by western blot analysis.. MeCP2 and α-SMA co-localized in human PCO membranes. When MeCP2 was depleted, TGFβ2 could not induce α-SMA expression. Zebularine decreased MeCP2 expression in lens epithelial cells in a time- and dose-dependent pattern and reversed TGFβ2-induced α-SMA expression.. MeCP2 plays an important role in TGFβ2-induced α-SMA expression in lens epithelial cells. Zebularine could reverse the TGFβ2-induced α-SMA expression by inhibiting MeCP2 expression. Therefore, zebularine could potentially prevent PCO formation.

    Topics: Actins; Blotting, Western; Capsule Opacification; Cataract Extraction; Cell Transdifferentiation; Cells, Cultured; Cytidine; Dose-Response Relationship, Drug; Epithelial Cells; Gene Expression; Gene Silencing; Humans; Methyl-CpG-Binding Protein 2; Microscopy, Confocal; Myofibroblasts; Posterior Capsule of the Lens; RNA, Small Interfering; Transforming Growth Factor beta

2011