transforming-growth-factor-beta and Borna-Disease

transforming-growth-factor-beta has been researched along with Borna-Disease* in 2 studies

Other Studies

2 other study(ies) available for transforming-growth-factor-beta and Borna-Disease

ArticleYear
Persistent Borna disease virus infection of neonatal rats causes brain regional changes of mRNAs for cytokines, cytokine receptor components and neuropeptides.
    Brain research bulletin, 1999, Volume: 49, Issue:6

    Borna disease virus (BDV) replicates in brain cells. The neonatally infected rat with BDV exhibits developmental-neuromorphological abnormalities, neuronal cytolysis, and multiple behavioral and physiological alterations. Here, we report on the levels of interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta1 (TGF-beta1), IL-1 receptor type I (IL-1RI), IL-1 receptor accessory protein (IL-1R AcP) I and II, glycoprotein 130, and various neuropeptide mRNAs in the cerebellum, parieto-frontal cortex, hippocampus and hypothalamus of BDV-infected rats at 7 and 28 days postintracerebral BDV inoculation. The data show that cytokine and neuropeptide mRNA components are abnormal and differentially modulated in brain regions. IL-1beta, TNF-alpha and TGF-beta1 mRNA levels were up-regulated in all brain regions following BDV inoculation. The same cerebellar samples from BDV-infected animals exhibited the highest levels of IL-1beta, IL-1Ra, TNF-alpha, IL-1RI, and IL-1R AcP II mRNA expression. The profiles of IL-1beta, IL-1Ra, TNF-alpha, and TGF-beta1 mRNA induction in the cerebellar samples were highly intercorrelated, indicating an association among cytokine ligand mRNAs. Cytokine mRNA induction was differentially up-regulated among brain regions, except for TGF-beta1. Specificity of transcriptional changes in response to BDV infection is also suggested by the up-regulation of cytokine and neuropeptide Y mRNAs associated with down-regulation of pro-opiomelanocortin, and with no change of IL-1R AcPI, dynorphin and leptin receptor mRNAs in the same brain region samples. Other data also show a differential mRNA component modulation in distinct brain regions obtained from the same rats depending on the stage of BDV infection. The conclusion of these studies is that cytokines may play a role in the neuropathophysiology of neonatally BDV-infected rats.

    Topics: Animals; Animals, Newborn; Borna Disease; Brain; Cytokines; Gene Expression Regulation; Interleukin-1; Neuropeptides; Organ Specificity; Rats; Rats, Inbred Lew; Receptors, Cytokine; Receptors, Interleukin-1; RNA, Messenger; Transcription, Genetic; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

1999
Transforming growth factor-beta modulates T cell-mediated encephalitis caused by Borna disease virus. Pathogenic importance of CD8+ cells and suppression of antibody formation.
    Journal of immunology (Baltimore, Md. : 1950), 1991, Nov-15, Volume: 147, Issue:10

    Borna disease is a virus-induced, immune-mediated encephalomyelitis based on a delayed-type hypersensitivity reaction. The severity of clinical symptoms after intracerebral infection of rats with Borna disease virus was reduced after treatment with transforming growth factor (TGF-beta 2). Intraperitoneal injection of the recombinant molecule, rTGF-beta 2, started on the day of infection at a dose of either 1 micrograms given every day or every other day for 8 consecutive days or 2 micrograms every third day, was found to result in the absence of typical Borna disease symptoms at 14 days after infection in most of the TGF-beta-treated rats, a time point at which all infected control animals not treated with rTGF-beta 2 showed distinct signs of Borna disease. The inhibition of the disease was paralleled by a significant reduction of the inflammatory reaction in the brain. However, the efficacy of treatment with rTGF-beta 2 was transient, because after day 21 only a slight or no reduction of the inflammatory reaction and, consequently, symptoms of Borna disease could be observed. Immunohistologic investigations revealed reduced CD4+ T cell numbers and no changes in macrophage counts in encephalitic lesions of rTG-beta treated rats. However, CD8+ cells were markedly decreased in the encephalitic lesions. Furthermore, the expression of MHC class II Ag was significantly reduced in the brain of rTGF-beta 2 treated Borna disease virus-infected rats, whereas MHC class I Ag expression was not. Most treated animals showed a reduction of Borna disease virus-specific serum antibodies, the result of an inhibition of the IgG response. The results presented here suggest a distinct influence of rTGF-beta 2 on T cell-mediated immune functions during the early phase of Borna disease virus-induced encephalomyelitis.

    Topics: Animals; Antigens, Viral; Borna Disease; Borna disease virus; Brain; CD8 Antigens; Encephalitis; Hippocampus; Hypersensitivity, Delayed; Immunity, Cellular; Rats; Rats, Inbred Lew; T-Lymphocyte Subsets; Transforming Growth Factor beta

1991