transfluthrin has been researched along with Malaria* in 19 studies
1 trial(s) available for transfluthrin and Malaria
Article | Year |
---|---|
Efficacy of a Spatial Repellent for Control of Malaria in Indonesia: A Cluster-Randomized Controlled Trial.
A cluster-randomized, double-blinded, placebo-controlled trial was conducted to estimate the protective efficacy (PE) of a spatial repellent (SR) against malaria infection in Sumba, Indonesia. Following radical cure in 1,341 children aged ≥ 6 months to ≤ 5 years in 24 clusters, households were given transfluthrin or placebo passive emanators (devices designed to release vaporized chemical). Monthly blood screening and biweekly human-landing mosquito catches were performed during a 10-month baseline (June 2015-March 2016) and a 24-month intervention period (April 2016-April 2018). Screening detected 164 first-time infections and an accumulative total of 459 infections in 667 subjects in placebo-control households, and 134 first-time and 253 accumulative total infections among 665 subjects in active intervention households. The 24-cluster protective effect of 27.7% and 31.3%, for time to first-event and overall (total new) infections, respectively, was not statistically significant. Purportedly, this was due in part to zero to low incidence in some clusters, undermining the ability to detect a protective effect. Subgroup analysis of 19 clusters where at least one infection occurred during baseline showed 33.3% ( Topics: Child, Preschool; Cyclopropanes; Double-Blind Method; Female; Fluorobenzenes; Housing; Humans; Indonesia; Infant; Insect Repellents; Insecticides; Malaria; Male; Mosquito Control; Mosquito Vectors | 2020 |
18 other study(ies) available for transfluthrin and Malaria
Article | Year |
---|---|
Small-scale field evaluation of transfluthrin-treated eave ribbons and sandals for the control of malaria vectors in rural Tanzania.
Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used.. This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls.. TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56-78% for An. arabiensis and 47-74% for An. funestus.. Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control. Topics: Animals; Anopheles; Humans; Insect Repellents; Insecticides; Malaria; Mosquito Control; Mosquito Vectors; Tanzania | 2023 |
Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus.
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus. Topics: Animals; Anopheles; Chromatography, Liquid; Insecticide Resistance; Insecticides; Malaria; Mosquito Vectors; Oxidative Stress; Permethrin; Pyrethrins; Tandem Mass Spectrometry | 2023 |
Semi-field evaluation of a volatile transfluthrin-based intervention reveals efficacy as a spatial repellent and evidence of other modes of action.
Presently, the most common malaria control tools-i.e., long lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS)-are limited to targeting indoor biting and resting behaviors of Anopheles mosquito species. Few interventions are targeted towards malaria control in areas where transmission is driven or persists due to outdoor biting behaviors. This study investigated a volatile pyrethroid-based spatial repellent (VPSR) designed to bridge this gap and provide protection from mosquito bites in outdoor spaces. Southern Province, Zambia, is one such environment where outdoor biting is suspected to contribute to malaria transmission, where people are active in the evening in open-walled outdoor kitchens. This study assessed the VPSR in replica kitchens within a controlled semi-field environment. Endpoints included effects on mosquito host seeking, immediate and delayed mortality, deterrence, blood feeding inhibition, and fertility. Host-seeking was reduced by approximately 40% over the course of nightly releases in chambers containing VPSR devices. Mosquito behavior was not uniform throughout the night, and the modeled effect of the intervention was considerably higher when hourly catch rates were considered. These two observations highlight a limitation of this overnight semi-field design and consideration of mosquito circadian rhythms is recommended for future semi-field studies. Additionally, deterrence and immediate mortality were both observed in treatment chambers, with evidence of delayed mortality and a dose related response. These results demonstrate a primarily personal protective mode of action with possible positive and negative community effects. Further investigation into this primary mode of action will be conducted through a field trial of the same product in nearby communities. Topics: Animals; Humans; Insect Repellents; Insecticides; Malaria; Mosquito Control; Mosquito Vectors; Pyrethrins | 2023 |
Deltamethrin and transfluthrin select for distinct transcriptomic responses in the malaria vector Anopheles gambiae.
The widespread use of pyrethroid insecticides in Africa has led to the development of strong resistance in Anopheles mosquitoes. Introducing new active ingredients can contribute to overcome this phenomenon and ensure the effectiveness of vector control strategies. Transfluthrin is a polyfluorinated pyrethroid whose structural conformation was thought to prevent its metabolism by cytochrome P450 monooxygenases in malaria vectors, thus representing a potential alternative for managing P450-mediated resistance occurring in the field. In this study, a controlled selection was used to compare the dynamics of resistance between transfluthrin and the widely used pyrethroid deltamethrin in the mosquito Anopheles gambiae. Then, the associated molecular mechanisms were investigated using target-site mutation genotyping and RNA-seq.. A field-derived line of An. gambiae carrying resistance alleles at low frequencies was used as starting material for a controlled selection experiment. Adult females were selected across 33 generations with deltamethrin or transfluthrin, resulting in three distinct lines: the Delta-R line (selected with deltamethrin), the Transflu-R line (selected with transfluthrin) and the Tiassale-S line (maintained without selection). Deltamethrin and transfluthrin resistance levels were monitored in each selected line throughout the selection process, as well as the frequency of the L1014F kdr mutation. At generation 17, cross-resistance to other public health insecticides was investigated and transcriptomes were sequenced to compare gene transcription variations and polymorphisms associated with adaptation to each insecticide.. A rapid increase in resistance to deltamethrin and transfluthrin was observed throughout the selection process in each selected line in association with an increased frequency of the L1014F kdr mutation. Transcriptomic data support a broader response to transfluthrin selection as compared to deltamethrin selection. For instance, multiple detoxification enzymes and cuticle proteins were specifically over-transcribed in the Transflu-R line including the known pyrethroid metabolizers CYP6M2, CYP9K1 and CYP6AA1 together with other genes previously associated with resistance in An. gambiae.. This study confirms that recurrent exposure of adult mosquitoes to pyrethroids in a public health context can rapidly select for various resistance mechanisms. In particular, it indicates that in addition to target site mutations, the polyfluorinated pyrethroid transfluthrin can select for a broad metabolic response, which includes some P450s previously associated to resistance to classical pyrethroids. This unexpected finding highlights the need for an in-depth study on the adaptive response of mosquitoes to newly introduced active ingredients in order to effectively guide and support decision-making programmes in malaria control. Topics: Animals; Anopheles; Female; Insecticides; Malaria; Mosquito Vectors; Pyrethrins; Transcriptome | 2023 |
Transfluthrin eave-positioned targeted insecticide (EPTI) reduces human landing rate (HLR) of pyrethroid resistant and susceptible malaria vectors in a semi-field simulated peridomestic space.
Volatile pyrethroids (VPs) are proven to reduce human-vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors.. Ribbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality.. EPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11-0.17], P < 0.001) to 0.57, (CI [0.42-0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18-1.91] P < 0.001) and (OR 1.67 [95% CI 1.29-2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78-2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82-1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74-1.30] P = 0.90).. Transfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes. Topics: Animals; Anopheles; Cyclopropanes; Female; Fluorobenzenes; Housing; Insect Bites and Stings; Insect Repellents; Insecticide Resistance; Malaria; Mosquito Control; Mosquito Vectors; Pyrethrins | 2021 |
Field Evaluation of a Spatial Repellent Emanation Vest for Personal Protection Against Outdoor Biting Mosquitoes.
Exophilic vectors are an important contributor to residual malaria transmission. Wearable spatial repellents (SR) can potentially provide personal protection in early evening hours before people retire indoors. An SR prototype for passive delivery of transfluthrin (TFT) for protecting humans against nocturnal mosquitoes in Kanchanaburi, western Thailand, is evaluated. A plastic polyethylene terephthalate (PET) sheet (676 cm2) treated with 55-mg TFT (TFT-PET), attached to the back of short-sleeve vest worn by human collector, was evaluated under semifield and outdoor conditions. Field-caught, nonblood-fed female Anopheles minimus s.l. were released in a 40 m length, semifield screened enclosure. Two collectors positioned at opposite ends conducted 12-h human-landing collections (HLC). The outdoor experiment was conducted between treatments among four collectors at four equidistant positions who performed HLC. Both trials were conducted for 30 consecutive nights. TFT-PET provided 67% greater protection (P < 0.001) for 12 h compared with unprotected control, a threefold reduction in the attack. In outdoor trials, TFT-PET provided only 16% protection against An. harrisoni Harbach & Manguin (Diptera: Culicidae) compared with unprotected collector (P = 0.0213). The TFT-PET vest reduced nonanophelines landing by 1.4-fold compared with the PET control with a 29% protective efficacy. These findings suggest that TFT-PET had diminished protective efficacy in an open field environment. Nonetheless, the concept of a wearable TFT emanatory device has the potential for protecting against outdoor biting mosquitoes. Further development of portable SR tools is required, active ingredient selection and dose optimization, and more suitable device design and materials for advancing product feasibility. Topics: Animals; Anopheles; Culicidae; Cyclopropanes; Fluorobenzenes; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Mosquito Control; Mosquito Vectors; Thailand | 2021 |
Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space.
Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of malaria vectors in the peri-domestic space.. Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol. Microencapsulated Citriodiol. This step-by-step evaluation of the selected 'push' and 'pull' components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control. Topics: Agriculture; Animals; Anopheles; Behavior, Animal; Cyclopropanes; Female; Fluorobenzenes; Housing; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Mosquito Control; Mosquito Vectors; Plant Extracts; Textiles | 2021 |
Predicting the impact of outdoor vector control interventions on malaria transmission intensity from semi-field studies.
Semi-field experiments with human landing catch (HLC) measure as the outcome are an important step in the development of novel vector control interventions against outdoor transmission of malaria since they provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the community-level impact of spatial repellents can not be estimated from such semi-field experiments.. We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-treated eave ribbons, the odour-baited Suna trap and their combination (push-pull system) on HLC of Anopheles arabiensis in the peridomestic area.. Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming versus killing, the vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave ribbons and by 38 to 82% at the same coverage with the push-pull system, under the assumption of a similar impact on biting indoors compared to outdoors.. The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promising tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and community protection. Our modelling framework can estimate the community-level impact of any tool intervening during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC. Topics: Animals; Anopheles; Bayes Theorem; Cyclopropanes; Female; Fluorobenzenes; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Models, Theoretical; Mosquito Control; Mosquito Vectors; Odorants | 2021 |
The impact of transfluthrin on the spatial repellency of the primary malaria mosquito vectors in Vietnam: Anopheles dirus and Anopheles minimus.
The complexity of mosquito-borne diseases poses a major challenge to global health efforts to mitigate their impact on people residing in sub-tropical and tropical regions, to travellers and deployed military personnel. To supplement drug- and vaccine-based disease control programmes, other strategies are urgently needed, including the direct control of disease vectors. Modern vector control research generally focuses on identifying novel active ingredients and/or innovative methods to reduce human-mosquito interactions. These efforts include the evaluation of spatial repellents, which are compounds capable of altering mosquito feeding behaviour without direct contact with the chemical source.. This project examined the impact of airborne transfluthrin from impregnated textile materials on two important malaria vectors, Anopheles dirus and Anopheles minimus. Repellency was measured by movement within taxis cages within a semi-field environment at the National Institute of Hygiene and Epidemiology in Hanoi, Vietnam. Knockdown and mortality were measured in adult mosquito bioassay cages. Metered-volume air samples were collected at a sub-set of points in the mosquito exposure trial.. Significant differences in knockdown/mortality were observed along a gradient from the exposure source with higher rates of knockdown/mortality at 2 m and 4 m when compared with the furthest distance (16 m). Knockdown/mortality was also greater at floor level and 1.5 m when compared to 3 m above the floor. Repellency was not significantly different except when comparing 2 m and 16 m taxis cages. Importantly, the two species reacted differently to transfluthrin, with An. minimus being more susceptible to knockdown and mortality. The measured concentrations of airborne transfluthrin ranged from below the limit of detection to 1.32 ng/L, however there were a limited number of evaluable samples complicating interpretation of these results.. This study, measuring repellency, knockdown and mortality in two malaria vectors in Vietnam demonstrates that both species are sensitive to airborne transfluthrin. The differences in magnitude of response between the two species requires further study before use in large-scale vector control programmes to delineate how spatial repellency would impact the development of insecticide resistance and the disruption of biting behaviour. Topics: Animals; Anopheles; Cyclopropanes; Feeding Behavior; Female; Fluorobenzenes; Humans; Insect Repellents; Insecticide Resistance; Malaria; Mosquito Control; Mosquito Vectors; Vietnam | 2020 |
Eave ribbons treated with transfluthrin can protect both users and non-users against malaria vectors.
Eave ribbons treated with spatial repellents effectively prevent human exposure to outdoor-biting and indoor-biting malaria mosquitoes, and could constitute a scalable and low-cost supplement to current interventions, such as insecticide-treated nets (ITNs). This study measured protection afforded by transfluthrin-treated eave ribbons to users (personal and communal protection) and non-users (only communal protection), and whether introducing mosquito traps as additional intervention influenced these benefits.. Five experimental huts were constructed inside a 110 m long, screened tunnel, in which 1000 Anopheles arabiensis were released nightly. Eave ribbons treated with 0.25 g/m. Transfluthrin-treated eave ribbons provided 83% and 62% protection indoors and outdoors respectively to users, plus 57% and 48% protection indoors and outdoors to the non-user. Protection for users remained constant, but protection for non-users increased with eave ribbons coverage, peaking once 80% of huts were fitted. Mortality of mosquitoes caged inside huts with eave ribbons was 100%. The UV-LED traps increased indoor exposure to users and non-users, but marginally reduced outdoor-biting. Combining the traps and eave ribbons did not improve user protection relative to eave ribbons alone.. Transfluthrin-treated eave ribbons protect both users and non-users against malaria mosquitoes indoors and outdoors. The mosquito-killing property of transfluthrin can magnify the communal benefits by limiting unwanted diversion to non-users, but should be validated in field trials against pyrethroid-resistant vectors. Benefits of the UV-LED traps as an intervention alone or alongside eave ribbons were however undetectable in this study. These findings extend the evidence that transfluthrin-treated eave ribbons could complement ITNs. Topics: Adult; Animals; Anopheles; Cyclopropanes; Fluorobenzenes; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Male; Mosquito Control; Mosquito Vectors; Tanzania; Young Adult | 2019 |
Protecting migratory farmers in rural Tanzania using eave ribbons treated with the spatial mosquito repellent, transfluthrin.
Many subsistence farmers in rural southeastern Tanzania regularly relocate to distant farms in river valleys to tend to crops for several weeks or months each year. While there, they live in makeshift semi-open structures, usually far from organized health systems and where insecticide-treated nets (ITNs) do not provide adequate protection. This study evaluated the potential of a recently developed technology, eave ribbons treated with the spatial repellent transfluthrin, for protecting migratory rice farmers in rural southeastern Tanzania against indoor-biting and outdoor-biting mosquitoes.. In the first test, eave ribbons (0.1 m × 24 m each) treated with 1.5% transfluthrin solution were compared to untreated ribbons in 24 randomly selected huts in three migratory communities over 48 nights. Host-seeking mosquitoes indoors and outdoors were monitored nightly (18.00-07.00 h) using CDC light traps and CO. In the two experiments, when treated eave ribbons were applied, the reduction in indoor densities ranged from 56 to 77% for Anopheles arabiensis, 36 to 60% for Anopheles funestus, 72 to 84% for Culex, and 80 to 98% for Mansonia compared to untreated ribbons. Reduction in outdoor densities was 38 to 77% against An. arabiensis, 36 to 64% against An. funestus, 63 to 88% against Culex, and 47 to 98% against Mansonia. There was no difference in protection between the two transfluthrin doses. In the survey, 58% of participants perceived the ribbons to be effective in reducing mosquito bites. Ninety per cent were willing to pay for the ribbons, the majority of whom were willing to pay but less than US$2.17 (5000 TZS), one-third of the current prototype cost.. Transfluthrin-treated eave ribbons can protect migratory rice farmers, living in semi-open makeshift houses in remote farms, against indoor-biting and outdoor-biting mosquitoes. The technology is acceptable to users and could potentially complement ITNs. Further studies should investigate durability and epidemiological impact of eave ribbons, and the opportunities for improving affordability to users. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Agriculture; Animals; Culicidae; Cyclopropanes; Farmers; Female; Fluorobenzenes; Housing; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Middle Aged; Mosquito Control; Rural Population; Tanzania; Transients and Migrants; Young Adult | 2019 |
Evaluation of a push-pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors.
Push-pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated different configurations of a push-pull system consisting of spatial repellents [transfluthrin-treated eave ribbons (0.25 g/m. Two experimental huts were used to evaluate protective efficacy of the spatial repellents (push-only), traps (pull-only) or their combinations (push-pull), relative to controls. Adult volunteers sat outdoors (1830 h-2200 h) catching mosquitoes attempting to bite them (outdoor-biting risk), and then went indoors (2200 h-0630 h) to sleep under bed nets beside which CDC-light traps caught host-seeking mosquitoes (indoor-biting risk). Number of traps and their distance from huts were varied to optimize protection, and 500 laboratory-reared Anopheles arabiensis released nightly inside the semi-field chambers over 122 experimentation nights.. Push-pull offered higher protection than traps alone against indoor-biting (83.4% vs. 35.0%) and outdoor-biting (79% vs. 31%), but its advantage over repellents alone was non-existent against indoor-biting (83.4% vs. 81%) and modest for outdoor-biting (79% vs. 63%). Using two traps (1 per hut) offered higher protection than either one trap (0.5 per hut) or four traps (2 per hut). Compared to original distance (5 m from huts), efficacy of push-pull against indoor-biting peaked when traps were 15 m away, while efficacy against outdoor-biting peaked when traps were 30 m away.. The best configuration of push-pull comprised transfluthrin-treated eave ribbons plus two traps, each at least 15 m from huts. Efficacy of push-pull was mainly due to the spatial repellent component. Adding odour-baited traps slightly improved personal protection indoors, but excessive trap densities increased exposure near users outdoors. Given the marginal efficacy gains over spatial repellents alone and complexity of push-pull, it may be prudent to promote just spatial repellents alongside existing interventions, e.g. LLINs or non-pyrethroid IRS. However, since both transfluthrin and traps also kill mosquitoes, and because transfluthrin can inhibit blood-feeding, field studies should be done to assess potential community-level benefits that push-pull or its components may offer to users and non-users. Topics: Animals; Anopheles; Carbon Dioxide; Cyclopropanes; Female; Fluorobenzenes; Humans; Insect Repellents; Malaria; Mosquito Control; Mosquito Vectors; Tanzania | 2019 |
A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria.
The vapor phase of the volatile pyrethroid transfluthrin incapacitates mosquitoes and prevents them from feeding. Although existing emanator products for delivering volatile pyrethroids protect against outdoor mosquito bites, they are too short-lived to be practical or affordable for routine use in low-income settings. New transfluthrin emanators, comprised simply of treated hessian fabric strips, have recently proven highly protective against outdoor-biting vectors of lymphatic filariasis, arboviruses and malaria, but their full protective lifespan, minimum dose requirements, and range of protection have not previously been assessed.. The effects of transfluthrin-treated hessian strips upon mosquito biting exposure of users and nearby non-users, as well as dependence of protection upon treatment dose, were measured outdoors in rural Tanzania using human landing catches (HLC).. Strips treated with 10ml of transfluthrin prevented at least three quarters (p < 0.001) of outdoor bites by Anopheles arabiensis, Culex spp. and Mansonia spp. mosquitoes, and >90% protection against bites on warmer nights with higher evaporation rates, for at least one year. Strips treated with this high dose also reduced biting exposure of non-users at a distance of up to 5m from the strips for An. arabiensis (p < 0.001) and up to 2m for Mansonia spp. (p = 0.008), but provided no protection to non-users against Culex spp. No evidence of increased risk for non-users, caused by diversion of mosquitoes to unprotected individuals, was found at any distance within an 80m radius. A dose of only 1ml provided equivalent protection to the 10ml dose against An. arabiensis, Culex spp. and Mansonia spp. mosquitoes over 6 months (p < 0.001).. Transfluthrin-treated hessian emanators provide safe, affordable, long-term protection against several different pathogen-transmitting mosquito taxa that attack humans outdoors, where they are usually active and cannot be protected by bed nets or residual sprays with conventional, solid-phase insecticides. Topics: Animals; Anopheles; Culex; Cyclopropanes; Elephantiasis, Filarial; Fluorobenzenes; Housing; Humans; Insect Bites and Stings; Insecticides; Malaria; Mosquito Control; Pyrethrins; Tanzania | 2017 |
Efficacy and user acceptability of transfluthrin-treated sisal and hessian decorations for protecting against mosquito bites in outdoor bars.
A number of mosquito vectors bite and rest outdoors, which contributes to sustained residual malaria transmission in endemic areas. Spatial repellents are thought to create a protective "bubble" within which mosquito bites are reduced and may be ideal for outdoor use. This study builds on previous studies that proved efficacy of transfluthrin-treated hessian strips against outdoor biting mosquitoes. The goal of this study was to modify strips into practical, attractive and acceptable transfluthrin treated sisal and hessian emanators that confer protection against potential infectious bites before people use bed nets especially in the early evening and outdoors. This study was conducted in Kilombero Valley, Ulanga District, south-eastern Tanzania.. The protective efficacy of hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations against early evening outdoor biting malaria vectors was measured by human landing catches (HLC) in outdoor bars during peak outdoor mosquito biting activity (19:00 to 23:00 h). Treated baskets and wall decorations reduced bites of Anopheles arabiensis mosquitoes by 89% (Relative Rate, RR = 0.11, 95% confidence interval, CI: 0.09-0.15, P < 0.001) and 86% (RR = 0.14, 95% CI: 0.11-0.18, P < 0.001), respectively. In addition, they significantly reduced exposure to outdoor bites of Culex spp. by 66% (RR = 0.34, 95% CI: 0.22-0.52, P < 0.001) and 56% (RR = 0.44, 95% CI: 0.29-0.66, P < 0.001), respectively.. Locally hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations are readily acceptable and confer protection against outdoor biting malaria vectors in the early evening and outdoors: when people are resting on the verandas, porches or in outdoor social places such as bars and restaurants. Additional research can help support the use of such items as complementary interventions to expand protection to communities currently experiencing outdoor transmission of mosquito-borne pathogens. Topics: Animals; Anopheles; Cyclopropanes; Fluorobenzenes; Humans; Insect Bites and Stings; Insect Repellents; Malaria; Mosquito Control; Mosquito Vectors; Patient Acceptance of Health Care; Tanzania; Time Factors | 2017 |
Impregnating hessian strips with the volatile pyrethroid transfluthrin prevents outdoor exposure to vectors of malaria and lymphatic filariasis in urban Dar es Salaam, Tanzania.
Semi-field trials using laboratory-reared Anopheles arabiensis have shown that, delivering the volatile pyrethroid transfluthrin by absorption into hessian strips, consistently provided > 99% human protective efficacy against bites for 6 months without retreating. Here the impact of this approach upon human exposure to wild populations of vectors for both malaria and filariasis under full field conditions is assessed for the first time.. Transfluthrin-treated and untreated strips were placed around human volunteers conducting human landing catch in an outdoor environment in urban Dar es Salaam, where much human exposure to malaria and filariasis transmission occurs outdoors. The experiment was replicated 9 times at 16 outdoor catching stations in 4 distinct locations over 72 working nights between May and August 2012.. Overall, the treated hessian strips conferred 99% protection against An. gambiae (1 bite versus 159) and 92% protection against Culex spp. (1478 bites versus 18,602). No decline in efficacy over the course of the study could be detected for the very sparse populations of An. gambiae (P = 0.32) and only a slow efficacy decline was observed for Culex spp. (P < 0.001), with protection remaining satisfactory over 3 months after strip treatment. Diversion of mosquitoes to unprotected humans in nearby houses was neither detected for An. gambiae (P = 0.152) nor for Culex spp. (Relative rate, [95% CI] = 1.03, [0.95, 1.11], P = 0.499).. While this study raises more questions than it answers, the presented evidence of high protection over long periods suggest this technology may have potential for preventing outdoor transmission of malaria, lymphatic filariasis and other vector-borne pathogens. Topics: Animals; Anopheles; Culex; Cyclopropanes; Elephantiasis, Filarial; Female; Fluorobenzenes; Humans; Insecticides; Malaria; Male; Mosquito Control; Pyrethrins; Tanzania | 2015 |
An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission.
Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission.. The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence--reduction in house entry of mosquitoes; irritancy or excito-repellency--induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity.. Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours.. This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable formats, may complement existing mainstream vector control tools. Topics: Animals; Anopheles; Behavior, Animal; Cyclopropanes; DDT; Feeding Behavior; Fluorobenzenes; Insecticides; Malaria; Mosquito Control; Tanzania | 2014 |
Experimental hut evaluation of linalool spatial repellent agar gel against Anopheles gambiae sensu stricto mosquitoes in a semi-field system in Bagamoyo, Tanzania.
Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties.. Four experimental huts fitted with exit traps and enclosed inside a large screened semi-field system were used for the evaluation. The tested spatial repellent product consisted of an agar gel emanator containing 73% linalool. Two rounds of experiments using a Latin square design were conducted to evaluate the efficacy of the linalool emanators compared to no treatment (negative control) and a transfluthrin coil (positive) against lab-reared disease free Anopheles gambiae s.s.. The emanators were hung inside experimental huts where two volunteers were sleeping unprotected. The outcome measures were repellency, % feeding inhibition, %mortality and post 24 h % mortality.. Unlike the mosquito coil, the linalool emanators did not show any feeding inhibition, repellency or induced mortality compared to the negative control. On the other hand mosquitoes kept for 24 h post exposure were 3 times more likely to die after being exposed to two 73% linalool emanators than the negative control.. Our results indicate that linalool agar gel emanators are not adequate as a spatial repellent against Anopheles gambiae s.s.. However adding linalool to known repellent formulations could be advantageous, not only because of its pleasant scent but also because of the delayed mortality effect it has on mosquitoes. Topics: Acyclic Monoterpenes; Agar; Animals; Anopheles; Cyclopropanes; Feeding Behavior; Female; Fluorobenzenes; Humans; Insect Repellents; Malaria; Monoterpenes; Tanzania | 2014 |
Toxicological effects of prolonged and intense use of mosquito coil emission in rats and its implications on malaria control.
Mosquito coil is a vector control option used to prevent malaria in low income counties, while some studies have addressed this issue, additional reseach is required to increase knowledge on the adverse health effects caused by the prolonged use of coils. In this study we investigated the toxicological effects of fumes from two locally manufactured mosquito coil insecticides (with pyrethroids: transfluthrin and d-allethrin as active ingredients) on male albino rats. For this, we recorded the haematological and biochemical indices, and made histopathology and mutagenicity evaluations in rats exposed to mosquito fumes during 2, 4, 8, 12 and 16 week periods. Haematological determination was performed using automated hematology analyzer to determine White Blood Cell (WBC), Packed Cell Volume (PCV), Red Blood Cell (RBC) and Platelet (PLT) counts, while biochemical evaluations were determined using available commercial kits. Gross histopathological changes were studied for the kidney, liver and lungs in sacrificed rats. The rat sperm head abnormalities assessment was used to evaluate mutagenicity. Mosquito coil fumes produced significant increase (P < 0.05) in the levels of total protein, total albumin and bilirubin, when animals were exposed from two weeks to 16 weeks with transfluthrin. Similarly, elevation in the activities of aspartate amino transferase, alanine amino transferase and alanine phosphatase, increased significantly in both insecticides. Increase in WBC, RBC and PCV were recorded for all the exposure periods, however PLT count showed no significant increase (P > 0.05). Mutagenicity assessment revealed sperm abnormality was statistically significant (P < 0.05) compared with the control at 8, 12 and 16 weeks post exposure to transfluthrin. Histological studies revealed severe lung damage evidenced by interstitial accumulations, pulmonary oedema and emphysema in exposed rats. Intracellular accumulations and severe sinusoidal congestion of liver cells were observed from 12 weeks exposure, indicating liver damage. Our studies indicate that mosquito coil fumes do initiate gradual damage to the host. These pathological effects must be taken into consideration by the malaria control program, particularly when regulating their long term and indoor usage. Topics: Allethrins; Animals; Culicidae; Cyclopropanes; Fluorobenzenes; Insecticides; Malaria; Male; Mosquito Control; Mutagenicity Tests; Rats; Smoke; Time Factors | 2013 |