trans-sodium-crocetinate has been researched along with Myopia* in 2 studies
2 other study(ies) available for trans-sodium-crocetinate and Myopia
Article | Year |
---|---|
Estimation of the Minimum Effective Dose of Dietary Supplement Crocetin for Prevention of Myopia Progression in Mice.
The natural carotenoid crocetin has been reported to suppress phenotypes of an experimental myopia model in mice. We investigated the minimum effective dose to prevent myopia progression in a murine model. Three-week-old male mice (C57B6/J) were equipped with a -30 diopter (D) lens to induce myopia, and fed with normal chow, 0.0003%, or 0.001% of crocetin-containing chow. Changes in refractive errors and axial lengths (AL) were evaluated after three weeks. Pharmacokinetics of crocetin in the plasma and the eyeballs of mice was evaluated with specific high sensitivity quantitative analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the minimum effective dosage. A concentration of 0.001% of crocetin-containing chow showed a significant ( Topics: Animals; Carotenoids; Dietary Supplements; Disease Models, Animal; Disease Progression; Eye; Male; Mice; Mice, Inbred C57BL; Myopia; Vitamin A | 2020 |
Oral crocetin administration suppressed refractive shift and axial elongation in a murine model of lens-induced myopia.
Increased global incidence of myopia necessitates establishment of therapeutic approaches against its progression. To explore agents which may control myopia, we screened 207 types of natural compounds and chemical reagents based on an activity of a myopia suppressive factor, early growth response protein 1 (Egr-1) in vitro. Among the candidates, crocetin showed the highest and dose-dependent activation of Egr-1. For in vivo analysis, experimental myopia was induced in 3-week-old C57BL/6 J mice with -30 diopter (D) lenses for 3 weeks. Animals were fed with normal or mixed chow containing 0.003% (n = 19) and 0.03% (n = 7) of crocetin during myopia induction. Refraction and axial length were measured at 3-week-old and the 6-week-old with an infrared photorefractor and a SD-OCT system. Compared to controls (n = 14), crocetin administration showed a significant smaller change of refractive errors (-13.62 ± 8.14 vs +0.82 ± 5.81 D for 0.003%, p < 0.01, -2.00 ± 4.52 D for 0.03%, p < 0.01) and axial elongation (0.27 ± 0.03 vs 0.22 ± 0.04 mm for 0.003%, p < 0.01, 0.23 ± 0.05 mm for 0.03%, p < 0.05). These results suggest that a dietary factor crocetin may have a preventive effect against myopia progression. Topics: Administration, Oral; Animals; Carotenoids; Disease Models, Animal; Early Growth Response Protein 1; Mice; Mice, Inbred C57BL; Myopia; Refraction, Ocular; Refractive Errors; Vitamin A | 2019 |