trans-2-3--4-5--tetrahydroxystilbene and Hyperglycemia

trans-2-3--4-5--tetrahydroxystilbene has been researched along with Hyperglycemia* in 1 studies

Other Studies

1 other study(ies) available for trans-2-3--4-5--tetrahydroxystilbene and Hyperglycemia

ArticleYear
Oxyresveratrol Supplementation to C57bl/6 Mice Fed with a High-Fat Diet Ameliorates Obesity-Associated Symptoms.
    Nutrients, 2017, Feb-16, Volume: 9, Issue:2

    Oxyresveratrol has been proven effective in inhibiting adipogenesis in a 3T3-L1 cell model. We investigated the preventive effect of oxyresveratrol supplementation on obesity development in high-fat diet-fed mice. Male C57bl/6 mice were randomly subjected to control (5% fat by weight, LF), high-fat (30% fat by weight, HF), and high-fat supplemented with 0.25% and 0.5% oxyresveratrol (OXY1 and OXY2, respectively) diet groups for eight weeks. Oxyresveratrol supplementation effectively alleviated obesity-associated symptoms such as insulin resistance, hyperglycemia, and hepatic steatosis in high-fat diet-fed mice. Compared to the high-fat diet group, oxyresveratrol supplementation suppressed expression of glucose-6-phosphatase, sterol regulatory element-binding proteins 1, fatty acid synthase and CCAAT/Enhancer-binding proteins α, and elevated AMP-activated protein kinase (α2-catalytic subunit) level in liver, upregulated insulin-dependent glucose transporter type 4 level in adipose tissue, and increased expression of insulin receptor substrate 1, insulin-dependent glucose transporter type 4, AMP-activated protein kinase α, peroxisome proliferator-activated receptor γ coactivator-1α, and sirtuin 1 in muscle to regulate lipid and glucose homeostasis in these tissues. This study demonstrated that oxyresveratrol supplementation effectively ameliorated obesity-associated symptoms in high-fat diet-fed mice, presumably attributed to mediating critical regulators involved in lipid and glucose homeostasis in liver, visceral fat, and muscle.

    Topics: Adipogenesis; Animals; Diet, High-Fat; Dietary Supplements; Fatty Liver; Glucose; Homeostasis; Hyperglycemia; Insulin Resistance; Intra-Abdominal Fat; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Muscles; Obesity; Plant Extracts; Stilbenes

2017