trans-10-cis-12-conjugated-linoleic-acid has been researched along with Weight-Loss* in 2 studies
2 other study(ies) available for trans-10-cis-12-conjugated-linoleic-acid and Weight-Loss
Article | Year |
---|---|
Trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) treatment and caloric restriction differentially affect adipocyte cell turnover in obese and lean mice.
Caloric restriction (CR) is one of the most promising strategies for weight loss but is associated with loss of lean mass, whereas compounds such as trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) have been promoted as antiobesity agents. To compare the mechanisms of weight reduction by CR and t10-c12 CLA, body composition, glucose control, and characteristics of adipose tissue with respect to cell turnover (stem cells and preadipocytes, apoptosis and autophagy) and Tbx-1 localization were examined in obese db/db mice and lean C57BL/6J mice undergoing CR or fed CLA isomers (0.4% w/w c9-t11 or t10-c12) for 4 weeks. Our findings show that the t10-c12 CLA reduced whole-body fat mass by decreasing all fat depots (visceral, inguinal, brown/interscapular), while CR lowered both whole-body fat and lean mass in obese mice. t10-c12 CLA elevated blood glucose in both obese and lean mice, while glycemia was not altered by CR. The adipocyte stem cell population remained unchanged; however, t10-c12 CLA reduced and CR elevated the proportion of immature adipocytes in obese mice, suggesting differential effects on adipocyte maturation. t10-c12 CLA reduced apoptosis (activated caspase-3) in both obese and lean mice but did not alter autophagy (LC3II/LC3I). Nuclear Tbx-1, a marker of metabolically active beige adipocytes, was greater in the adipose of t10-c12 CLA-fed animals. Thus, weight loss achieved via t10-c12 CLA primarily involves fat loss and more cells with Tbx-1 localized to the nucleus, while CR operates through a mechanism that reduces both lean and fat mass and blocks adipocyte differentiation. Topics: Adipogenesis; Adipose Tissue, Beige; Adipose Tissue, Brown; Adipose Tissue, White; Adiposity; Adult Stem Cells; Animals; Anti-Obesity Agents; Apoptosis; Biomarkers; Caloric Restriction; Dietary Supplements; Linoleic Acids, Conjugated; Male; Mice, Inbred C57BL; Mice, Mutant Strains; Obesity; Random Allocation; T-Box Domain Proteins; Weight Loss | 2017 |
Trans-10, cis-12-conjugated linoleic acid does not increase body fat loss induced by energy restriction.
Very little evidence exists concerning the effects of conjugated linoleic acid (CLA) on body fat reduction induced by energy restriction. Moreover, although an effect of trans-10, cis-12-CLA on lipolysis has been suggested, it has not been consistently shown. The aims of the present study were to determine whether trans-10, cis-12-CLA increases the reduction of body fat induced by energy restriction, and to analyse its effect on lipolysis and adipose tissue lipase expression (hormone-sensitive lipase (HSL) and adipose tissue TAG lipase (ATGL)). Male Syrian Golden hamsters were fed a high-fat diet during 7 weeks in order to make them fatter. Then they were submitted to a mild energy restriction (25 %) without or with supplementation of 0.5 % trans-10, cis-12-CLA for 3 weeks. Basal glycerol release and lipolysis stimulated by several drugs acting at different levels of the lipolytic cascade were measured in epididymal adipose tissue. The expression of HSL and ATGL was assessed by real-time RT-PCR. No differences were found in adipose tissues size between the experimental groups. Medium adipocyte size and total number of adipocytes were similar in both experimental groups. Animals fed the CLA-enriched diet showed similar lipolytic rates as well as HSL and ATGL expressions to the controls. In conclusion, trans-10, cis-12-CLA does not promote adipose tissue lipid mobilisation nor does it heighten body fat reduction induced by energy restriction. Consequently, this CLA isomer does not seem to be a useful tool to be included in body weight-loss strategies followed in obesity treatment. Topics: Adipocytes; Adipose Tissue; Adiposity; Animals; Caloric Restriction; Cell Size; Cricetinae; Drug Evaluation, Preclinical; Linoleic Acids, Conjugated; Lipase; Lipolysis; Male; Mesocricetus; Weight Loss | 2008 |