tranilast has been researched along with Neoplasms* in 11 studies
3 review(s) available for tranilast and Neoplasms
Article | Year |
---|---|
Anti-cancer effects of Tranilast: An update.
Tranilast (TRN) or (N-3,4 -dimethoxy cinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite and is identified mainly as an anti-allergic agent with limited side effects. The anti-cancer effects of tranilast either alone or in combination with chemotherapeutic drugs have been evidenced in several pre-clinical studies. The main mechanism of action of tranilast includes targeting and modulation of various signaling and immune regulatory pathways including Transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol 3-kinase (PI3K), MAP-Kinase (MAPK), Protein kinase B (Akt/PKB), c-Jun N-terminal kinase, modulation of cancer stem cells, etc. Most of these pathways are involved in tumor proliferation, invasion, and metastasis and it is postulated that tranilast, with its low toxicity profile and high anti-carcinogenic abilities, can serve as a potential anti-tumorigenic agent. The main aim of this review is to provide updated information on the anti-cancer effects of tranilast and its significance as a therapeutic agent. Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Humans; Neoplasms; ortho-Aminobenzoates; Signal Transduction | 2021 |
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction | 2015 |
Therapeutic potential of tranilast, an anti-allergy drug, in proliferative disorders.
Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid; Rizaben®) is an anti-allergy drug approved for use in Japan and South Korea, also used against asthma, autoimmune diseases, and atopic and fibrotic pathologies. The antitumor potential of tranilast is attracting considerable interest. This review summarizes recent evidence concerning the effect of tranilast on different tumor types and discusses the drug's possible mode of action in this area. In vivo and in vitro studies are covered, as well as evidence from clinical trials, in which tranilast was evaluated in various models of proliferative disorders. The findings presented in this report, demonstrate the excellent potential of tranilast in the management of certain types of tumor, and provide a strong rationale for the initiation of controlled clinical trials in this area. Topics: Adult; Animals; Anti-Allergic Agents; Antineoplastic Agents; Cell Line, Tumor; Clinical Trials as Topic; Female; Humans; Neoplasms; ortho-Aminobenzoates | 2012 |
8 other study(ies) available for tranilast and Neoplasms
Article | Year |
---|---|
Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models.
Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response. Topics: Animals; Drug-Related Side Effects and Adverse Reactions; Immunologic Factors; Immunotherapy; Mice; Micelles; Neoplasms; ortho-Aminobenzoates; Polymers; Tumor Microenvironment | 2022 |
Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain.
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers. Topics: Cell Cycle Proteins; Cell Proliferation; HCT116 Cells; Humans; Molecular Docking Simulation; Muramidase; Neoplasm Proteins; Neoplasms; ortho-Aminobenzoates; Protein Binding; Protein Domains; Receptor for Advanced Glycation End Products; S100 Calcium Binding Protein A6 | 2019 |
Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells.
Neurofibromatosis type 1 (NF1) is caused by germline mutations in the NF1 gene and is characterized by café au lait spots and benign tumours known as neurofibromas. NF1 encodes the tumour suppressor protein neurofibromin, which negatively regulates the small GTPase Ras, with the constitutive activation of Ras signalling resulting from NF1 mutations being thought to underlie neurofibroma development. We previously showed that knockdown of neurofibromin triggers epithelial-mesenchymal transition (EMT) signalling and that such signalling is activated in NF1-associated neurofibromas. With the use of a cell-based drug screening assay, we have now identified the antiallergy drug tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) as an inhibitor of EMT and found that it attenuated the expression of mesenchymal markers and angiogenesis-related genes in NF1-mutated sNF96.2 cells and in neurofibroma cells from NF1 patients. Tranilast also suppressed the proliferation of neurofibromin-deficient cells in vitro more effectively than it did that of intact cells. In addition, tranilast inhibited sNF96.2 cell migration and proliferation in vivo. Knockdown of type III collagen (COL3A1) also suppressed the proliferation of neurofibroma cells, whereas expression of COL3A1 and SOX2 was increased in tranilast-resistant cells, suggesting that COL3A1 and the transcription factor SOX2 might contribute to the development of tranilast resistance. Topics: Animals; Anti-Allergic Agents; Cell Line; Cell Proliferation; Down-Regulation; Epithelial-Mesenchymal Transition; Female; Gene Deletion; Genes, Neurofibromatosis 1; Germ-Line Mutation; HeLa Cells; Humans; Mice, SCID; Neoplasm Invasiveness; Neoplasms; Neovascularization, Physiologic; Neurofibromatosis 1; Neurofibromin 1; ortho-Aminobenzoates | 2018 |
Prior anti-CAFs break down the CAFs barrier and improve accumulation of docetaxel micelles in tumor.
Abnormal expression of stromal cells and extracellular matrix in tumor stroma creates a tight barrier, leading to insufficient extravasation and penetration of therapeutic agents. Cancer-associated fibroblasts (CAFs) take on pivotal roles encouraging tumor progression.. To surmount the refractoriness of stroma, we constructed a multi-targeting combined scenario of anti-CAFs agent tranilast and antitumor agent docetaxel micelles (DTX-Ms). Tranilast cut down crosstalk between tumor cells and stromal cells, ameliorated the tumor microenvironment, and enhanced the antiproliferation efficacy of DTX-Ms on cancer cells.. Diverse experiments demonstrated that tranilast enhanced DTX-Ms' antitumor effect in a two-stage pattern by CAFs ablation, tumor cell migration blocking, and metastasis inhibition. Along with activated CAFs decreasing in vivo, the two-stage therapy succeeded in reducing interstitial fluid pressure, normalizing microvessels, improving micelles penetration and retention, and inhibiting tumor growth and metastasis. Interestingly, tranilast alone failed to inhibit tumor growth in vivo, and it could only be used as an adjuvant medicine together with an antitumor agent.. Our proposed two-stage therapy offers a promising strategy to enhance antitumor effects by breaking down CAFs barrier and increasing micellar delivery efficiency. Topics: 3T3 Cells; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Body Weight; Cancer-Associated Fibroblasts; Cell Line, Tumor; Cell Movement; Cell Proliferation; Docetaxel; Extracellular Fluid; Female; Humans; Mice; Mice, Inbred BALB C; Micelles; Microvessels; Neoplasm Metastasis; Neoplasms; Organ Specificity; ortho-Aminobenzoates; Spheroids, Cellular; Taxoids; Tissue Distribution; Tumor Microenvironment | 2018 |
Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner.
Accumulation of mechanical stresses during cancer progression can induce blood and lymphatic vessel compression, creating hypo-perfusion, hypoxia and interstitial hypertension which decrease the efficacy of chemo- and nanotherapies. Stress alleviation treatment has been recently proposed to reduce mechanical stresses in order to decompress tumor vessels and improve perfusion and chemotherapy. However, it remains unclear if it improves the efficacy of nanomedicines, which present numerous advantages over traditional chemotherapeutic drugs. Furthermore, we need to identify safe and well-tolerated pharmaceutical agents that reduce stress levels and may be added to cancer patients' treatment regimen. Here, we show mathematically and with a series of in vivo experiments that stress alleviation improves the delivery of drugs in a size-independent manner. Importantly, we propose the repurposing of tranilast, a clinically approved anti-fibrotic drug as stress-alleviating agent. Using two orthotopic mammary tumor models, we demonstrate that tranilast reduces mechanical stresses, decreases interstitial fluid pressure (IFP), improves tumor perfusion and significantly enhances the efficacy of different-sized drugs, doxorubicin, Abraxane and Doxil, by suppressing TGFβ signaling and expression of extracellular matrix components. Our findings strongly suggest that repurposing tranilast could be directly used as a promising strategy to enhance, not only chemotherapy, but also the efficacy of cancer nanomedicine. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Collagen; Down-Regulation; Doxorubicin; Drug Delivery Systems; Extracellular Fluid; Extracellular Matrix; Gene Expression Regulation, Neoplastic; Humans; Hyaluronic Acid; Mice, Nude; Models, Biological; Nanomedicine; Neoplasms; ortho-Aminobenzoates; Particle Size; Perfusion; Signal Transduction; Stress, Mechanical; Transforming Growth Factor beta; Treatment Outcome; Tumor Microenvironment | 2017 |
Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME-targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer-associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro-tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor-associated immune responses by CAF-targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti-fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid-derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell-derived factor-1, prostaglandin E2 , and transforming growth factor-β. In tumor-draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor-associated antigen-specific CD8(+) T cells. In addition, CAF-targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8(+) T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell-based vaccines; however, the suppressive effect on tumor growth was not observed in tumor-bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF-targeted therapy, and these effects are enhanced when combined with effector-stimulatory immunotherapy such as dendritic cell-based vaccines. Our mouse model provides a novel rationale with TME-targeted strategy for the development of cell-based cancer immunotherapy. Topics: Animals; Antineoplastic Agents; Cancer Vaccines; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Dendritic Cells; Female; Fibroblasts; Immunity, Cellular; Immunity, Humoral; Immunotherapy; Killer Cells, Natural; Lymph Nodes; Mice; Mice, Inbred C57BL; Mice, SCID; Neoplasms; ortho-Aminobenzoates; T-Lymphocytes, Regulatory; Tumor Microenvironment | 2015 |
Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types.
Cancer-associated fibroblasts (CAFs) are the dominant stromal component in the tumour microenvironment (TME), playing critical roles in generation of pro-tumourigenic TME; however, their contribution to suppression of antitumour immune responses has not been fully understood. To elucidate the interaction between CAFs and immune suppressor cells, we examined whether inhibition of CAFs function would impair the induction of immune suppressor cell types in vitro. In this study, we applied an anti-allergic and antifibrotic agent tranilast, which is used clinically, and evaluated a potential of tranilast to serve as a CAFs inhibitor. CAFs that had been isolated from E.G7 or LLC1 tumour-bearing mice were cultured in the presence of tranilast, and thereafter, CAFs functions on the secretion of some soluble factors as well as the induction of immune suppressor cells were evaluated. As a result, tranilast inhibited the proliferation of CAFs and reduced the levels of stromal cell-derived factor-1, prostaglandin E2 and transforming growth factor-β1 from CAFs in a dose-dependent manner. On the other hand, tranilast exerted no inhibitory effects on immune cells at doses under 100 μm. The induction of regulatory T cells and myeloid-derived suppressor cells from their progenitor cells was suppressed in the medium that CAFs had been cultured in the presence of tranilast; however, these findings were not observed when those progenitor cells were cultured in the medium containing tranilast alone. These data demonstrate that tranilast inhibits CAFs function, which is responsible for the induction of immune suppressor cells, and possesses a potential to serve as a specific CAFs inhibitor. Topics: Animals; Cell Line, Tumor; Cell Proliferation; Female; Fibroblasts; Mice; Neoplasms; ortho-Aminobenzoates; T-Lymphocyte Subsets; Tumor Microenvironment | 2014 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer. Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |