tranilast has been researched along with Liver-Neoplasms* in 2 studies
2 other study(ies) available for tranilast and Liver-Neoplasms
Article | Year |
---|---|
Evaluation of Suppressive Effects of Tranilast on the Invasion/Metastasis Mechanism in a Murine Pancreatic Cancer Cell Line.
Numerous studies have investigated the mechanism of the antitumor effect of tranilast, well known as an antiallergic drug. Herein, we investigated the mechanism of the antitumor effects of tranilast using murine PAN 02 cell line.. In an allograft mouse model, the number of metastatic sites in the liver was counted. Wound healing and chemoinvasion assay were performed to evaluate migration and invasive ability of PAN 02, respectively. Activities of matrix metalloproteinases (MMPs) were evaluated by gelatin zymography. The expression of cofactors in the activation of MMP-2 was assessed by immunohistochemical staining at the front of metastasis.. The number of metastatic sites was reduced in tranilast-treated groups. Migration ability and tumor invasiveness were significantly inhibited by tranilast in a dose-dependent manner. Gelatin zymography revealed inhibition of MMP-2 activity. Immunohistochemical staining showed remarkable attenuation of tissue inhibitor of metalloproteinase (TIMP-) 2 expression in tranilast-treated groups.. Tissue inhibitor of metalloproteinase 2 is necessary for MMP-2 activation with interaction between membrane type 1-MMP and proMMP-2. These results suggested that tranilast may inhibit MMP-2 activation through attenuating TIMP-2 expression, resulting in inhibition of tumor invasion and metastasis. Our results showed possibility of tranilast in clinical application for novel cancer therapy. Topics: Allografts; Animals; Anti-Allergic Agents; Cell Line, Tumor; Cell Movement; Cell Proliferation; Liver Neoplasms; Matrix Metalloproteinase 2; Mice, Inbred C57BL; Neoplasm Invasiveness; Neoplasms, Experimental; ortho-Aminobenzoates; Pancreatic Neoplasms; Tissue Inhibitor of Metalloproteinase-2 | 2017 |
Tranilast inhibits the growth and metastasis of mammary carcinoma.
Tranilast (N-[3,4-dimethoxycinnamonyl]-anthranilic acid) is a drug of low toxicity that is orally administered, and has been used clinically in Japan as an antiallergic and antifibrotic agent. Its antifibrotic effect is thought to depend on the inhibition of transforming growth factor-beta (TGF-beta). It has also been shown to exert antitumor effects, but its mode of action is unclear. Here, we explored the antitumor effects of tranilast in vitro and in vivo. Tranilast inhibited the proliferation of several tumor cell lines including mouse mammary carcinoma (4T1), rat mammary carcinoma stem cell (LA7), and human breast carcinoma (MDA-MB-231 and MCF-7). Tranilast blocked cell-cycle progression in vitro. In the highly metastatic 4T1 cell line, tranilast inhibited phospho-Smad2 generation, consistent with a blockade of TGF-beta signaling. It also inhibited the activation of MAP kinases (extracellularly regulated kinase 1 and 2 and JNK), which have been linked to TGF-beta-dependent epithelial-to-mesenchymal transition and, indeed, it blocked epithelial-to-mesenchymal transition. Although tranilast only partially inhibited TGF-beta production by 4T1 tumor cells, it potently inhibited the production of TGF-beta, interferon-gamma, IL-6, IL-10, and IL-17 by lymphoid cells, suggesting a general anti-inflammatory activity. In vivo, female BALB/c mice were inoculated with syngeneic 4T1 cells in mammary fat pads and treated with tranilast by gavage. Tranilast reduced (>50%) the growth of the primary tumor. However, its effects on metastasis were more striking, with more than 90% reduction of metastases in the lungs and no metastasis in the liver. Thus, tranilast has potential activity as an antimetastatic agent in breast cancer. Topics: Animals; Antineoplastic Agents; Carcinoma; Cell Line, Tumor; Cell Transdifferentiation; Drug Screening Assays, Antitumor; Enzyme Activation; Female; Humans; Liver Neoplasms; Lung Neoplasms; Lymphoma; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Neoplasm Proteins; Organ Specificity; ortho-Aminobenzoates; Rats; Rats, Sprague-Dawley; Smad2 Protein; Species Specificity; Thymoma; Thymus Neoplasms; Transforming Growth Factor beta | 2009 |