tranilast has been researched along with Edema* in 3 studies
3 other study(ies) available for tranilast and Edema
Article | Year |
---|---|
Therapeutic effects of gel ointments containing tranilast nanoparticles on paw edema in adjuvant-induced arthritis rats.
Tranilast (TL), an antiallergic agent, has been clinically used in the treatment of bronchial asthma, although its clinical use has been limited by its poor solubility in water, photodegradation and systemic side effects. In this study, we prepared a gel ointment containing TL nanoparticles (TLnano gel ointment), and investigated its usefulness. In addition, we demonstrated the preventive effects of the TLnano gel ointment on inflammation in adjuvant-induced arthritis (AA) rats. The TLnano gel ointment was prepared using Bead Smash 12 (a bead mill) and additives including sodium docusate, 2-hydroxypropyl-β-cyclodextrin, methylcellulose and Carbopol 934; the mean particle diameter of the TL nanoparticles was 71.0±25.4 nm. In in vitro skin penetration experiments, the amount of penetrated TL, the penetration rate (Jc) and the penetration coefficient through the skin (Kp) of the TLnano gel ointment were significantly higher than those of a gel ointment containing TL microparticles (TLmicro gel ointment; particle diameter 50.5±26.3 µm). The TL concentrations in the skin tissue and plasma of rats receiving the TLnano gel ointment were also higher than in rats receiving the TLmicro gel ointment. In addition, the application of the TLnano gel ointment attenuated the increase in paw edema of the hind feet of AA rats in comparison with AA rats treated with the TLmicro gel ointment. These results suggest that TL nanoparticles can be applied to the formulation of a transdermal system, and that a transdermal formulation using TL nanoparticles might be a delivery option for the clinical treatment of RA. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Acrylates; Administration, Cutaneous; Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Arthritis, Rheumatoid; beta-Cyclodextrins; Edema; Gels; Inflammation; Male; Methylcellulose; Nanoparticles; Ointments; ortho-Aminobenzoates; Particle Size; Rats; Rats, Wistar; Skin; Skin Absorption; Solubility | 2014 |
Intrabronchial foreign body extracted with tranilast and corticosteroid.
We present a case of intrabronchial foreign body buried in granulation tissue, which was successfully extracted administrating tranilast (n-[3,4-dimethoxycinnamoyl] anthranilic acid), suppressing collagen synthesis by fibroblasts in keloid and hypertrophic scars, and corticosteroid. Bronchoscopy of a 74-year-old man showed the nail was buried in reactive granulation tissue and could not be observed from the surface. Tranilast at 300 mg/day and methylprednisolone at 250 mg/day were prescribed for 4 days, followed by a reduction of the corticosteroid to 40 mg/day for 3 days. Seven days later, the granulation tissue and mucosal edema were diminished, and the nail was successfully extracted. Topics: Aged; Bronchi; Bronchoscopy; Drug Administration Schedule; Edema; Foreign Bodies; Granulation Tissue; Humans; Male; Methylprednisolone; ortho-Aminobenzoates | 2008 |
A late cutaneous response in actively sensitized rats: a new method for evaluating the efficacy of antiallergic drugs.
We established a new and facile model to investigate allergic mechanism and assess the effect of antiallergic compounds. Male Wistar rats were actively or passively sensitized. Active sensitization was performed by injection of both dinitrophenylated-ovalbumin (DNP-OA) and Bordetella pertussis. Nine days later, DNP-OA was injected into the right hind footpad. This antigen challenge induced a biphasic footpad swelling that consisted of an early-phase (EPR) and a late-phase response (LPR). In rats passively sensitized with rat anti-DNP-OA serum, DNP-OA induced only EPR. The EPR was suppressed by disodium cromoglycate, a mast cell stabilizer, but not by cyclosporin A, an immunosuppressant, while the LPR was suppressed by cyclosporin A. Furthermore, to investigate these two allergic responses determined by the interactions between the hapten and the carrier proteins, two distinct haptenated antigens were created. DNP-Ascaris (DNP-As) induced a marked EPR and LPR in DNP-As-sensitized rats. However, DNP-As induced only EPR in DNP-OA-sensitized rats, indicating that the usage of the same carrier protein in both sensitization and challenge was necessary for induction of LPR. These data suggest that this actively sensitization model in which EPR and LPR are functionally distinguishable should be useful for evaluating the efficacy of antiallergic compounds. Topics: Aminopyridines; Animals; Anti-Allergic Agents; Antigens; Cromolyn Sodium; Cyclosporine; Dinitrobenzenes; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Evaluation, Preclinical; Edema; Haptens; Hindlimb; Hypersensitivity, Delayed; Male; ortho-Aminobenzoates; Ovalbumin; Passive Cutaneous Anaphylaxis; Promethazine; Pyridines; Pyrimidinones; Quinolones; Rats; Rats, Wistar | 2006 |