tram-34 and Fibrosis

tram-34 has been researched along with Fibrosis* in 7 studies

Other Studies

7 other study(ies) available for tram-34 and Fibrosis

ArticleYear
Blockade of KCa3.1: A novel target to treat TGF-β1 induced conjunctival fibrosis.
    Experimental eye research, 2018, Volume: 167

    Postoperative conjunctival fibrosis is common in patients after glaucoma filtration surgery. The calcium activated potassium (KCa3.1) channel has been shown to inhibit fibrosis in many non-ocular tissues. However, its potential in treating ocular fibrosis remains unknown. We tested the anti-fibrotic potential of TRAM34, a selective blocker of KCa3.1 channel, in treating conjunctival fibrosis. Primary human conjunctival fibroblast (HCF) cultures derived from donor tissues. Myofibroblasts causing conjunctival fibrosis were generated by growing HCFs in the presence of TGFβ1 for 72 h. KCa3.1 mRNA and protein expression in HCF was examined with PCR and western blot. The anti-fibrotic potential of TRAM34 was examined by measuring fibrotic gene expression with quantitative PCR (qPCR), immunofluorescence, and western blotting in HCFs in ± TGFβ1 (5 ng/ml) and TRAM34 (0-25 μM). The cytotoxicity of Tram34 was analyzed with trypan blue assay and its role in Smad signaling was studied with immunofluorescence. Expression of KCa3.1 mRNA and protein was detected in HCFs and TGFβ1 treatment to HCFs significantly increased expression of KCa3.1. TRAM34 treatment attenuated transcription of fibrotic markers, αSMA (p < .001), fibronectin (p < .05), collagen I (p < .001) and collagen IV (p < .001) in TGFβ1-induced HCFs. Further, TRAM34 significantly inhibited TGFβ1-stimulated αSMA protein expression (p < .01) and nuclear translocation of fibrotic Smad2/3 in HCFs and showed no significant cytotoxicity (p < .05). The KCa3.1 potassium channel plays a significant role in the prevention of conjunctival fibrosis and TRAM34 has potential to control post surgical bleb fibrosis in patients. In vivo studies are warranted.

    Topics: Blotting, Western; Cell Proliferation; Cells, Cultured; Conjunctiva; Fibroblasts; Fibrosis; Fluorescent Antibody Technique, Indirect; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Pyrazoles; Real-Time Polymerase Chain Reaction; RNA, Messenger; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta1

2018
KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis.
    PloS one, 2018, Volume: 13, Issue:3

    Vision impairment from corneal fibrosis is a common consequence of irregular corneal wound healing after injury. Intermediate-conductance calmodulin/calcium-activated K+ channels 3.1 (KCa3.1) play an important role in cell cycle progression and cellular proliferation. Proliferation and differentiation of corneal fibroblasts to myofibroblasts can lead to corneal fibrosis after injury. KCa3.1 has been shown in many non-ocular tissues to promote fibrosis, but its role in corneal fibrosis is still unknown. In this study, we characterized the expression KCa3.1 in the human cornea and its role in corneal wound healing in vivo using a KCa3.1 knockout (KCa3.1-/-) mouse model. Additionally, we tested the hypothesis that blockade of KCa3.1 by a selective KCa3.1 inhibitor, TRAM-34, could augment a novel interventional approach for controlling corneal fibrosis in our established in vitro model of corneal fibrosis. The expression of KCa3.1 gene and protein was analyzed in human and murine corneas. Primary human corneal fibroblast (HCF) cultures were used to examine the potential of TRAM-34 in treating corneal fibrosis by measuring levels of pro-fibrotic genes, proteins, and cellular migration using real-time quantitative qPCR, Western blotting, and scratch assay, respectively. Cytotoxicity of TRAM-34 was tested with trypan blue assay, and pro-fibrotic marker expression was tested in KCa3.1-/-. Expression of KCa3.1 mRNA and protein was detected in all three layers of the human cornea. The KCa3.1-/- mice demonstrated significantly reduced corneal fibrosis and expression of pro-fibrotic marker genes such as collagen I and α-smooth muscle actin (α-SMA), suggesting that KCa3.1 plays an important role corneal wound healing in vivo. Pharmacological treatment with TRAM-34 significantly attenuated corneal fibrosis in vitro, as demonstrated in HCFs by the inhibition TGFβ-mediated transcription of pro-fibrotic collagen I mRNA and α-SMA mRNA and protein expression (p<0.001). No evidence of cytotoxicity was observed. Our study suggests that KCa3.1 regulates corneal wound healing and that blockade of KCa3.1 by TRAM-34 offers a potential therapeutic strategy for developing therapies to cure corneal fibrosis in vivo.

    Topics: Animals; Cell Differentiation; Cell Proliferation; Cells, Cultured; Cornea; Corneal Diseases; Disease Models, Animal; Fibroblasts; Fibrosis; Gene Expression; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Mice, Inbred C57BL; Mice, Knockout; Molecular Targeted Therapy; Myofibroblasts; Pyrazoles; Wound Healing

2018
The role of KCa3.1 channels in cardiac fibrosis induced by pressure overload in rats.
    Pflugers Archiv : European journal of physiology, 2015, Volume: 467, Issue:11

    The intermediate-conductance Ca(2+)-activated K(+) (KCa3.1) channels play a pivotal role in the proliferation and collagen secretion of cardiac fibroblasts. However, their contribution in cardiac fibrosis remains unknown. This study was designed to investigate whether KCa3.1 channels mediate the development of cardiac fibrosis. Pressure-overloaded rats were induced by abdominal aortic constriction and treated without or with KCa3.1 blocker (TRAM-34) or angiotensin type 1 receptor blocker (losartan) for 2 weeks. Besides the increase of blood pressure, angiotensin (Ang) II level in the plasma and myocardium, left ventricle mass and hydroxyproline concentration, myocardial hypertrophy, as well as significant collagen deposition in the perivascular regions and interstitium of the myocardium were observed in pressure-overloaded rats. The expression of leukocyte differentiation antigens (CD45 and CD3), macrophage surface marker (F4/80), tumor necrosis factor alpha, and monocyte chemotactic protein-1 (MCP-1) also significantly increased. All these alterations were prevented by losartan and TRAM-34. TRAM-34 also reduced the increase of renin and angiotensinogen in the plasma and myocardium of pressure-overloaded rats. Ang II promoted the migration of monocytes through endothelial cells and the secretion of MCP-1 from human umbilical vein endothelial cells in vitro, which was inhibited by TRAM-34. In conclusion, the present study demonstrates that TRAM-34 alleviates cardiac fibrosis induced by pressure overload, which is related to its inhibitory action on KCa3.1 channels and Ang II level. Our findings indicate that the inhibition of KCa3.1 channels may represent a novel approach of preventing the progression of cardiac fibrosis, and also add to the already developing literature of promising targets for TRAM-34.

    Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensinogen; Animals; Aorta, Abdominal; Blood Pressure; Cardiomegaly; Cytokines; Fibrosis; Hydroxyproline; Losartan; Male; Myocardium; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Sprague-Dawley; Renin; Shaw Potassium Channels

2015
Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 36, Issue:4

    After myocardial infarction (MI), cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1) has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms.. Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs) stimulated by angiotensin II (Ang II) was tested.. Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways.. Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

    Topics: Animals; Cells, Cultured; Collagen; Fibroblasts; Fibrosis; Heart; Heart Ventricles; Intermediate-Conductance Calcium-Activated Potassium Channels; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Pyrazoles; Ventricular Remodeling

2015
KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2014, Volume: 29, Issue:2

    Fibroblast activation plays a critical role in diabetic nephropathy (DN). The Ca2+-activated K+ channel KCa3.1 mediates cellular proliferation of many cell types including fibroblasts. KCa3.1 has been reported to be a potential molecular target for pharmacological intervention in a diverse array of clinical conditions. However, the role of KCa3.1 in the activation of myofibroblasts in DN is unknown. These studies assessed the effect of KCa3.1 blockade on renal injury in experimental diabetes.. As TGF-β1 plays a central role in the activation of fibroblasts to myofibroblasts in renal interstitial fibrosis, human primary renal interstitial fibroblasts were incubated with TGF-β1+/- the selective inhibitor of KCa3.1, TRAM34, for 48 h. Two streptozotocin-induced diabetic mouse models were used in this study: wild-type KCa3.1+/+ and KCa3.1-/- mice, and secondly eNOS-/- mice treated with or without a selective inhibitor of KCa3.1 (TRAM34). Then, markers of fibroblast activation and fibrosis were determined.. Blockade of KCa3.1 inhibited the upregulation of type I collagen, fibronectin, α-smooth muscle actin, vimentin and fibroblast-specific protein-1 in renal fibroblasts exposed to TGF-β1 and in kidneys from diabetic mice. TRAM34 reduced TGF-β1-induced phosphorylation of Smad2/3 and ERK1/2 but not P38 and JNK MAPK in interstitial fibroblasts.. These results suggest that blockade of KCa3.1 attenuates diabetic renal interstitial fibrogenesis through inhibiting activation of fibroblasts and phosphorylation of Smad2/3 and ERK1/2. Therefore, therapeutic interventions to prevent or ameliorate DN through targeted inhibition of KCa3.1 deserve further consideration.

    Topics: Animals; Biopsy; Blotting, Western; Cell Proliferation; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibroblasts; Fibrosis; Gene Expression Regulation; Humans; Immunohistochemistry; Intermediate-Conductance Calcium-Activated Potassium Channels; Kidney Cortex; Male; Mice; Mice, Inbred C57BL; Pyrazoles; Real-Time Polymerase Chain Reaction; RNA; Signal Transduction

2014
Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice.
    Diabetes, 2013, Volume: 62, Issue:8

    The Ca(2+)-activated K(+) channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1(-/-) mice, and secondly eNOS(-/-) mice, had diabetes induced with streptozotocin and then were treated with/without a selective inhibitor of KCa3.1 (TRAM34). Our results show that the albumin-to-creatinine ratio significantly decreased in diabetic KCa3.1(-/-) mice compared with diabetic wild-type mice and in diabetic eNOS(-/-) mice treated with TRAM34 compared with diabetic mice. The expression of monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule 1 (ICAM1), F4/80, plasminogen activator inhibitor type 1 (PAI-1), and type III and IV collagen significantly decreased (P < 0.01) in kidneys of diabetic KCa3.1(-/-) mice compared with diabetic wild-type mice. Similarly, TRAM34 reduced the expression of the inflammatory and fibrotic markers described above in diabetic eNOS(-/-) mice. Furthermore, blocking the KCa3.1 channel in both animal models led to a reduction of transforming growth factor-β1 (TGF-β1) and TGF-β1 type II receptor (TβRII) and phosphorylation of Smad2/3. Our results provide evidence that KCa3.1 mediates renal fibrosis in diabetic nephropathy through the TGF-β1/Smad signaling pathway. Blockade of KCa3.1 may be a novel target for therapeutic intervention in patients with diabetic nephropathy.

    Topics: Animals; Chemokine CCL2; Collagen Type IV; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibrosis; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Kidney; Mice; Mice, Knockout; Plasminogen Activator Inhibitor 1; Pyrazoles; Receptors, Transforming Growth Factor beta; Signal Transduction; Smad Proteins; Transforming Growth Factor beta1

2013
Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels.
    Proceedings of the National Academy of Sciences of the United States of America, 2009, Aug-25, Volume: 106, Issue:34

    Proliferation of interstitial fibroblasts is a hallmark of progressive renal fibrosis commonly resulting in chronic kidney failure. The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) has been proposed to promote mitogenesis in several cell types and contribute to disease states characterized by excessive proliferation. Here, we hypothesized that K(Ca)3.1 activity is pivotal for renal fibroblast proliferation and that deficiency or pharmacological blockade of K(Ca)3.1 suppresses development of renal fibrosis. We found that mitogenic stimulation up-regulated K(Ca)3.1 in murine renal fibroblasts via a MEK-dependent mechanism and that selective blockade of K(Ca)3.1 functions potently inhibited fibroblast proliferation by G(0)/G(1) arrest. Renal fibrosis induced by unilateral ureteral obstruction (UUO) in mice was paralleled by a robust up-regulation of K(Ca)3.1 in affected kidneys. Mice lacking K(Ca)3.1 (K(Ca)3.1(-/-)) showed a significant reduction in fibrotic marker expression, chronic tubulointerstitial damage, collagen deposition and alphaSMA(+) cells in kidneys after UUO, whereas functional renal parenchyma was better preserved. Pharmacological treatment with the selective K(Ca)3.1 blocker TRAM-34 similarly attenuated progression of UUO-induced renal fibrosis in wild-type mice and rats. In conclusion, our data demonstrate that K(Ca)3.1 is involved in renal fibroblast proliferation and fibrogenesis and suggest that K(Ca)3.1 may represent a therapeutic target for the treatment of fibrotic kidney disease.

    Topics: Animals; Apoptosis; Blotting, Western; Cell Cycle; Cell Line; Cell Proliferation; Fibroblast Growth Factor 2; Fibroblasts; Fibrosis; Flow Cytometry; Gene Expression; Intermediate-Conductance Calcium-Activated Potassium Channels; Kidney; Membrane Potentials; Mice; Mice, Knockout; Patch-Clamp Techniques; Pyrazoles; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ureteral Obstruction

2009