tram-34 has been researched along with Diabetes-Mellitus--Type-2* in 2 studies
2 other study(ies) available for tram-34 and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats.
Impaired endothelial function, which is dysregulated in diabetes, also precedes hypertension. We hypothesized that in Type 2 diabetes, the impaired endothelium-dependent relaxation is due to a loss of endothelium-derived hyperpolarization (EDH) that is regulated by impaired ion channel function. Zucker diabetic fatty (ZDF), Zucker heterozygote, and homozygote lean control rats were used as the experimental models in our study. Third-order mesenteric arteries were dissected and mounted on a pressure myograph; mRNA was quantified by RT-PCR and channel proteins by Western blotting. Under nitric oxide (NO) synthase and cyclooxygenase inhibition, endothelial stimulation with ACh fully relaxes control but not diabetic arteries. In contrast, when small-conductance calcium-activated potassium (KCa) channels and intermediate- and large-conductance KCa (I/BKCa) are inhibited with apamin and charybdotoxin, NO is able to compensate for ACh-induced relaxation in control but not in diabetic vessels. After replacement of charybdotoxin with 1-[(2-chlorophenyl)diphenylmethyl]-(1)H-pyrazole (TRAM-34; IKCa inhibitor), ACh-induced relaxation in diabetic animals is attenuated. Specific inhibition with TRAM-34 or charybdotoxin attenuates ACh relaxation in diabetes. Stimulation with 1-ethyl-2-benzimidazolinone (IKCa activator) shows a reduced relaxation in diabetes. Activation of BKCa with 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-(2)H-benzimidazol-2-one NS619 leads to similar relaxations of control and diabetic arteries. RT-PCR and Western blot analysis demonstrate elevated mRNA and protein expression levels of IKCa in diabetes. Our results suggest that the compensatory effect of NO and EDH-associated, endothelium-dependent relaxation is reduced in ZDF rats. Specific blockade of IKCa with TRAM-34 reduces NO and EDH-type relaxation in diabetic rats, indicating an elevated contribution of IKCa in diabetic small mesenteric artery relaxation. This finding correlates with increased IKCa mRNA and protein expression in this vessel. Topics: Acetylcholine; Animals; Apamin; Benzimidazoles; Calcium Channel Agonists; Charybdotoxin; Cyclooxygenase Inhibitors; Diabetes Mellitus, Type 2; Endothelium, Vascular; Heterozygote; Homozygote; Intermediate-Conductance Calcium-Activated Potassium Channels; Large-Conductance Calcium-Activated Potassium Channels; Male; Membrane Potentials; Mesenteric Arteries; Nitric Oxide Synthase Type III; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Zucker; RNA, Messenger; Small-Conductance Calcium-Activated Potassium Channels; Vasodilation | 2014 |
Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle.
The detailed molecular mechanisms underlying pathogenesis of various vascular diseases such as atherosclerosis are not fully understood in type-2 diabetes. The present study was designed to investigate whether insulin regulates K(Ca)3.1 channels and participates in vasculopathy in type-2 diabetes. A rat model with experimental insulin-resistant type-2 diabetes was used for detecting pathological changes in the aorta wall, and cultured vascular smooth muscle cells (VSMCs) were employed to investigate the regulation of K(Ca)3.1 channels by insulin and roles of K(Ca)3.1 channels in cell migration and proliferation using molecular biology and electrophysiology. Early pathological changes were observed and expression of K(Ca)3.1 channels increased in the aorta wall of the type 2 diabetic rats. K(Ca)3.1 channel mRNA, protein levels and current density were greatly enhanced in cultured VSMCs treated with insulin, and the effects were countered in the cells treated with the ERK1/2 inhibitor PD98059, but not the p38-MAPK inhibitor SB203580. In addition, insulin stimulated cell migration and proliferation in cultured VSMCs, and the effects were fully reversed in the cells treated with the K(Ca)3.1 blocker TRAM-34 or PD98059, but not SB203580. These results demonstrate the novel information that insulin increases expression of K(Ca)3.1 channels by stimulating ERK1/2 phosphorylation thereby promoting migration and proliferation of VSMCs, which likely play at least a partial role in the development of vasculopathy in type-2 diabetes. Topics: Animals; Aorta; Calcium-Calmodulin-Dependent Protein Kinases; Cell Movement; Cell Proliferation; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Enzyme Inhibitors; Flavonoids; Imidazoles; Insulin; Intermediate-Conductance Calcium-Activated Potassium Channels; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction | 2011 |