tram-34 and Brain-Neoplasms

tram-34 has been researched along with Brain-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for tram-34 and Brain-Neoplasms

ArticleYear
KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma.
    Current neuropharmacology, 2018, Volume: 16, Issue:5

    The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling.. KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3.1. This article will briefly review the available compounds (TRAM-34, senicapoc, NS6180), their binding sites and mechanisms of action, and then discuss the potential usefulness of these compounds for the treatment of brain tumors based on their brain penetration and their efficacy in reducing microglia activation in animal models of ischemic stroke and Alzheimer's disease.. Senicapoc, which has previously been in Phase III clinical trials, would be available for repurposing, and could be used to quickly translate findings made with other KCa3.1 blocking tool compounds into clinical trials.

    Topics: Acetamides; Animals; Brain Neoplasms; Glioblastoma; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Membrane Transport Modulators; Pyrazoles; Trityl Compounds

2018
KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment.
    Oncotarget, 2016, May-24, Volume: 7, Issue:21

    Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.

    Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Brain Neoplasms; CDC2 Protein Kinase; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dacarbazine; Drug Synergism; Drug Therapy, Combination; G2 Phase Cell Cycle Checkpoints; Glioma; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Kaplan-Meier Estimate; Mice; Mice, Inbred C57BL; Microglia; Neoplasms, Experimental; Neoplastic Stem Cells; Phosphorylation; Primary Cell Culture; Pyrazoles; Temozolomide

2016
KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo.
    Cell death & disease, 2013, Aug-15, Volume: 4

    Glioblastoma multiforme (GBM) is a diffuse brain tumor characterized by high infiltration in the brain parenchyma rendering the tumor difficult to eradicate by neurosurgery. Efforts to identify molecular targets involved in the invasive behavior of GBM suggested ion channel inhibition as a promising therapeutic approach. To determine if the Ca(2+)-dependent K(+) channel KCa3.1 could represent a key element for GBM brain infiltration, human GL-15 cells were xenografted into the brain of SCID mice that were then treated with the specific KCa3.1 blocker TRAM-34 (1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole). After 5 weeks of treatment, immunofluorescence analyses of cerebral slices revealed reduced tumor infiltration and astrogliosis surrounding the tumor, compared with untreated mice. Significant reduction of tumor infiltration was also observed in the brain of mice transplanted with KCa3.1-silenced GL-15 cells, indicating a direct effect of TRAM-34 on GBM-expressed KCa3.1 channels. As KCa3.1 channels are also expressed on microglia, we investigated the effects of TRAM-34 on microglia activation in GL-15 transplanted mice and found a reduction of CD68 staining in treated mice. Similar results were observed in vitro where TRAM-34 reduced both phagocytosis and chemotactic activity of primary microglia exposed to GBM-conditioned medium. Taken together, these results indicate that KCa3.1 activity has an important role in GBM invasiveness in vivo and that its inhibition directly affects glioma cell migration and reduces astrocytosis and microglia activation in response to tumor-released factors. KCa3.1 channel inhibition therefore constitutes a potential novel therapeutic approach to reduce GBM spreading into the surrounding tissue.

    Topics: Animals; Astrocytes; Brain; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Gene Silencing; Glioblastoma; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Male; Mice; Mice, Inbred C57BL; Mice, SCID; Neoplasm Invasiveness; Neuroglia; Potassium Channel Blockers; Pyrazoles; RNA, Small Interfering; Xenograft Model Antitumor Assays

2013
Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration.
    Journal of cellular physiology, 2011, Volume: 226, Issue:7

    Glioblastoma cells in vivo are exposed to a variety of promigratory signals, including undefined serum components that infiltrate into high grade gliomas as result of blood-brain barrier breakdown. Glioblastoma cell migration has been further shown to depend heavily on ion channels activity. We have then investigated the modulatory effects of fetal calf serum (FCS) on ion channels, and their involvement in U87-MG cells migration. Using the perforated patch-clamp technique we have found that, in a subpopulation of cells (42%), FCS induced: (1) an oscillatory activity of TRAM-34 sensitive, intermediate-conductance calcium-activated K (IK(Ca) ) channels, mediated by calcium oscillations previously shown to be induced by FCS in this cell line; (2) a stable activation of a DIDS- and NPPB-sensitive Cl current displaying an outward rectifying instantaneous current-voltage relationship and a slow, voltage-dependent inactivation. By contrast, in another subpopulation of cells (32%) FCS induced a single, transient IK(Ca) current activation, always accompanied by a stable activation of the Cl current. The remaining cells did not respond to FCS. In order to understand whether the FCS-induced ion channel activities are instrumental to promoting cell migration, we tested the effects of TRAM-34 and DIDS on the FCS-induced U87-MG cell migration using transwell migration assays. We found that these inhibitors were able to markedly reduce U87-MG cell migration in the presence of FCS, and that their co-application resulted in an almost complete arrest of migration. It is concluded that the modulation of K and Cl ion fluxes is essential for the FCS-induced glioblastoma cell migration.

    Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Chloride Channels; Chlorides; Dose-Response Relationship, Drug; Glioblastoma; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Membrane Potentials; Neoplasm Invasiveness; Patch-Clamp Techniques; Potassium; Pyrazoles; Serum; Time Factors

2011