tosylphenylalanyl-chloromethyl-ketone has been researched along with Neoplasms* in 4 studies
4 other study(ies) available for tosylphenylalanyl-chloromethyl-ketone and Neoplasms
Article | Year |
---|---|
Serine protease inhibitors interact with IFN-γ through up-regulation of FasR; a novel therapeutic strategy against cancer.
Among the many immunomodulatory and anti-tumor activities, IFN-γ up-regulates tumor cell death mediated by Fas receptor (FasR). Our and several other studies have demonstrated the involvement of trypsin-like proteases (TLPs) in the mode of action of IFN-γ. In the present study, we tried to unravel the role of serine proteases in IFN-γ induced Fas-mediated cell death. Our present results show that both tosyl-l-Lysine chloromethylketone (TLCK), a trypsin like protease inhibitor and tosyl-l-phenylalanine chloromethylketone (TPCK) - a chymotrypsin like protease (CLP) inhibitor, sensitize HeLa cells to Fas-mediated cell death. The combined effect of these protease inhibitors with anti-Fas was stronger than additive. In contrast, elastase inhibitor III (EI), which also contains the chloromethyl ketone moiety, was not active. Furthermore, co-addition of TLCK or TPCK with IFN-γ markedly enhanced Fas-induced cell death. IFN-γ led to up-regulation of FasR on its own, which was further enhanced by the co-addition of TLCK or TPCK. This was evident both by increased expression of Fas receptor on cell surface and by elevated Fas mRNA level. This study may provide the basis for the design of a novel combinatory therapeutic strategy that could enhance the eradication of tumors. Topics: Apoptosis; Cell Line, Tumor; Cell Survival; Drug Synergism; Fas Ligand Protein; fas Receptor; HeLa Cells; HT29 Cells; Humans; Interferon-gamma; Neoplasms; RNA, Messenger; Serine Endopeptidases; Serine Proteinase Inhibitors; Tosyllysine Chloromethyl Ketone; Tosylphenylalanyl Chloromethyl Ketone; Up-Regulation | 2015 |
Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets.
Chemoprevention is an approach to decrease cancer morbidity and mortality through inhibition of carcinogenesis and prevention of disease progression. Although the trans stilbene derivative resveratrol has chemopreventive properties, its action is compromised by weak non-specific effects on many biological targets. Replacement of the stilbene ethylenic bridge of resveratrol with a 1,2,4-thiadiazole heterocycle and modification of the substituents on the two aromatic rings afforded potential chemopreventive agents with enhanced potencies and selectivities when evaluated as inhibitors of aromatase and NF-κB and inducers of quinone reductase 1 (QR1). Topics: Antineoplastic Agents; Aromatase; Binding Sites; Catalytic Domain; Chemoprevention; Computer Simulation; Enzyme Activation; Humans; NAD(P)H Dehydrogenase (Quinone); Neoplasms; NF-kappa B; Resveratrol; Stilbenes; Structure-Activity Relationship; Thiadiazoles | 2012 |
Anti-inflammatory sesquiterpene lactones from the flower of Vernonia cinerea.
Bioassay-guided fractionation of the hexane extract from the flowers of Vernonia cinerea (Asteraceae) led to the isolation of a new sesquiterpene lactone, 8α-hydroxyhirsutinolide (2), and a new naturally occurring derivative, 8α-hydroxyl-1-O-methylhirsutinolide (3), along with seven known compounds (1 and 4-9). The structures of the new compounds were determined by 1D and 2D NMR experiments and by comparison with the structure of compound 1, whose relative stereochemistry was determined by X-ray analysis. The isolated compounds were evaluated for their cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production and tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Compounds 1, 2, 4, 5, and 9 inhibited TNF-α-induced NF-κB activity with IC(50) values of 3.1, 1.9, 0.6, 5.2, and 1.6 μM, respectively; compounds 4 and 6-9 exhibited significant NO inhibitory activity with IC(50) values of 2.0, 1.5, 1.2, 2.7, and 2.4 μM, respectively. Topics: Animals; Anti-Inflammatory Agents; Cell Line; Crystallography, X-Ray; Flowers; Humans; Lactones; Magnetic Resonance Spectroscopy; Mice; Models, Molecular; Neoplasms; NF-kappa B; Nitric Oxide; Plant Extracts; Sesquiterpenes; Tumor Necrosis Factor-alpha; Vernonia | 2012 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer. Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |