toremifene and Precancerous-Conditions

toremifene has been researched along with Precancerous-Conditions* in 5 studies

Other Studies

5 other study(ies) available for toremifene and Precancerous-Conditions

ArticleYear
Hepatocellular neoplasms after intrahepatic transplantation of ovarian fragments into ovariectomized rats.
    Hepatology (Baltimore, Md.), 2006, Volume: 43, Issue:4

    Intrahepatic transplantation of ovarian fragments in ovariectomized rats results in morphological abnormalities. The liver acini draining blood from ovarian grafts show alterations resembling chemically induced amphophilic hepatocellular preneoplasias. We investigated the long-term development of these estrogen-induced foci of altered hepatocytes (FAH). We divided 451 Lewis rats into one main group (MG) and 11 (7 female, 4 male) control groups and observed them for up to 30 months. MG animals were ovariectomized and received ovarian transplants into the right liver part. Different combinations of castration, transplantation of ovarian or testicular fragments, and administration of antiestrogenic toremifene were used in controls. In the MG, transplants showed signs of gonadotropic stimulation, and estrogen levels were strongly increased in the downstream liver acini. After 6 and 12 months, FAH developed in hepatocytes downstream of the transplants. After 18 months, 27% of the MG animals showed transformation of FAH into hepatocellular adenomas; this figure increased to 42% after 24 months (8/19), significantly outnumbering four spontaneous adenomas that developed between 18 and 30 months in 258 control animals. Hepatocellular carcinoma (HCC) appeared only in the MG. At 24 and 30 months, 18 HCCs developed; thus, 78% of MG animals showed at least one carcinoma. Administration of toremifene in ovariectomized and transplanted animals completely prevented hepatocarcinogenesis. Testicular grafts showed no influence on liver tissue. In conclusion, initially adaptive but preneoplastic alterations in hepatocytes downstream of intrahepatically transplanted ovarian fragments may transform into HCC, indicating a strong hepatocarcinogenic potential of high local levels of endogenous estrogens in the rat liver.

    Topics: Adenoma, Liver Cell; Animals; Aorta; Carcinoma, Hepatocellular; Estradiol; Estrogen Antagonists; Estrogens; Female; Gonadal Steroid Hormones; Gonadotropins; Hepatic Veins; Hepatocytes; Immunohistochemistry; Liver; Liver Neoplasms; Male; Ovariectomy; Ovary; Precancerous Conditions; Rats; Rats, Inbred Lew; Testis; Toremifene; Transforming Growth Factor alpha; Transplantation, Heterotopic

2006
GTx begins next phase of clinical trials for prostate cancer.
    Expert review of anticancer therapy, 2001, Volume: 1, Issue:3

    Topics: Antineoplastic Agents, Hormonal; Clinical Trials as Topic; Humans; Male; Precancerous Conditions; Prostatic Neoplasms; Toremifene

2001
Comparison of the effects of tamoxifen and toremifene on rat hepatocarcinogenesis.
    Archives of toxicology, 2000, Volume: 74, Issue:4-5

    The hepatoproliferative and cytochrome P450 enzyme inducing effects of two antiestrogens, tamoxifen and toremifene, were compared in female Sprague-Dawley rats using immunohistochemical staining methods. Equimolar doses of the antiestrogens (tamoxifen 45 mg/kg and toremifene 48 mg/kg) were given by oral administration to 6-week-old rats for 12 months including a 3-month recovery period. Controls received the vehicle carboxymethylcellulose. Altogether 90 rats were used in the study. Five rats per dose group were killed after 14 days, 5 weeks, 3, 6 and 12 months of treatment as well as after the 3-month recovery period. Hepatocellular carcinoma was found in four out of five rats after 12 months of tamoxifen treatment. After the 3-month recovery period all tamoxifen-treated rats had large liver tumors (diameter up to 3 cm). No tumors were observed in toremifene-treated rats. Liver cell proliferation was measured by the index of proliferating cell nuclear antigen (PCNA) expression. Immunohistochemical staining with the placental form of glutathione S-transferase (GST-P) was used as a marker for preneoplastic foci. Cytochrome P450 induction was measured using specific antibodies to isoenzymes. Tamoxifen increased the incidence of GST-P-positive foci significantly by 3 months of treatment but toremifene did not as compared with the controls. Liver cell proliferation increased significantly only in the liver tumors of tamoxifen-treated rats after 12 months of treatment and during the recovery period. Both antiestrogens induced the isoenzymes CYP2B1/2 and CYP3A1 within 14 days although tamoxifen was a more powerful inducer. Immunohistochemistry of rat liver sections showed a centrilobular localization of these induced enzyme proteins. The expression of CYP2B1/2 and 3A1 could also be observed in foci after 3 and 6 months of administration and in liver adenomas and in some carcinomas after 12 months of administration with tamoxifen. The results show that tamoxifen, but not toremifene, has the potential to induce and promote the development of rat hepatocarcinogenesis in this experimental model.

    Topics: Animals; Aryl Hydrocarbon Hydroxylases; Body Weight; Cell Division; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Enzyme Induction; Estrogen Receptor Modulators; Female; Glutathione Transferase; Immunohistochemistry; Isoenzymes; Liver Neoplasms, Experimental; Precancerous Conditions; Proliferating Cell Nuclear Antigen; Rats; Rats, Sprague-Dawley; Tamoxifen; Toremifene

2000
Initiating activity of the anti-estrogen tamoxifen, but not toremifene in rat liver.
    Carcinogenesis, 1997, Volume: 18, Issue:11

    A striking difference between two structurally related anti-estrogen medicines is that tamoxifen is strongly hepatocarcinogenic in the rat, whereas toremifene lacks such activity. To study the basis for this difference, the initiating potential of tamoxifen and toremifene were studied by measurement of rapid induction of hepatocellular altered foci (HAF) that express placental-type glutathione S-transferase in the livers of female Sprague-Dawley (S-D) rats and female Fischer 344 (F344) rats. Both agents were administered by gavage at equimolar doses up to a dose that produced marked weight gain suppression. In rats given the high dose of 40 mg/kg per day tamoxifen continuously for 36 weeks, 75% of S-D rats developed liver neoplasms, in contrast to only 10% of F344 rats. In the S-D strain, tamoxifen produced a tendency to increased HAF at 2 weeks at the dose of 40 mg/kg per day and by 12 weeks, a dose-related increase was evident. In contrast, toremifene induced no HAF even at the equimolar high dose of 42.4 mg/kg per day for 12 weeks. The induction of HAF by tamoxifen was less in the F344 rats. Neither agent elicited increases in hepatocellular proliferation in S-D or F344 rats. When phenobarbital was administered for 24 weeks as a promoting agent after the anti-estrogens, S-D rats given tamoxifen at 20 mg/kg per day for 12 weeks, developed liver neoplasms, but not F344 rats or rats of either strain given even a higher dose (42.4 mg/kg) of toremifene. Thus, tamoxifen has initiating activity in these rat strains whereas toremifene does not.

    Topics: Animals; Body Weight; Estrogen Antagonists; Female; Liver; Liver Neoplasms, Experimental; Precancerous Conditions; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Tamoxifen; Toremifene

1997
A two-year dietary carcinogenicity study of the antiestrogen toremifene in Sprague-Dawley rats.
    Drug and chemical toxicology, 1996, Volume: 19, Issue:4

    The carcinogenic potential of the nonsteroidal triphenylethylene antiestrogen toremifene (Fareston) was evaluated in a standard 104-week rat dietary carcinogenicity study. The doses were 0, 0.12, 1.2, 5.0 and 12 mg/kg/day and the number of animals 50/sex/dose group. The body weight gain and food consumption were monitored once weekly (study weeks 1-16) or once every four weeks thereafter (study weeks 17-104). Blood samples were taken at weeks 34, 52 and 104 and the plasma concentrations of toremifene, as well as the two main metabolites (deaminohydroxy)toremifene and N-demethyltoremifene, were measured. All doses of toremifene reduced food intake and body weight gain. Toremifene caused a significant reduction in mortality, which was mainly due to reduced incidences of pituitary tumors. This was evident in all dose groups. Drug-related decrease of mammary tumors in females (at all doses) and testicular tumors in male rats (doses > or = 1.2 mg/kg/day) were also evident. The incidence of the preneoplastic foci of basophilic hepatocytes were significantly decreased in treated female groups. Toremifene induced no preneoplastic or neoplastic lesions. Based on histopathology, no obvious toxicity could be observed. Drug-related changes were observed in the genital organs, thyroid, spleen, mammary gland, adrenal, kidney, stomach and lung. These changes were due to hormonal disturbances or as a result of reduced food consumption or reduced incidences of pituitary, mammary or testicular tumors. This study indicates that toremifene is an efficient antiestrogen in long-term treatment, is well tolerated and has no tumorigenic potential in rats.

    Topics: Aging; Animals; Antineoplastic Agents, Hormonal; Body Weight; Carcinogenicity Tests; Eating; Female; Gonads; Liver; Male; Neoplasms; Precancerous Conditions; Rats; Rats, Sprague-Dawley; Survival Rate; Toremifene

1996