topiroxostat and Disease-Models--Animal

topiroxostat has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for topiroxostat and Disease-Models--Animal

ArticleYear
Xanthine Oxidoreductase Inhibitors Suppress the Onset of Exercise-Induced AKI in High HPRT Activity
    Journal of the American Society of Nephrology : JASN, 2022, Volume: 33, Issue:2

    Hereditary renal hypouricemia type 1 (RHUC1) is caused by URAT1/SLC22A12 dysfunction, resulting in urolithiasis and exercise-induced AKI (EIAKI). However, because there is no useful experimental RHUC1 animal model, the precise pathophysiologic mechanisms underlying EIAKI have yet to be elucidated. We established a high HPRT activity. The novel

    Topics: Acute Kidney Injury; Allopurinol; Animals; Disease Models, Animal; Enzyme Inhibitors; Hypoxanthine Phosphoribosyltransferase; Kidney; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitriles; NLR Family, Pyrin Domain-Containing 3 Protein; Organic Anion Transporters; Physical Exertion; Pyridines; Renal Tubular Transport, Inborn Errors; Sodium-Potassium-Exchanging ATPase; Urate Oxidase; Urinary Calculi; Xanthine Dehydrogenase

2022
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Topiroxostat ameliorates oxidative stress and inflammation in sepsis-induced lung injury.
    Zeitschrift fur Naturforschung. C, Journal of biosciences, 2020, Nov-26, Volume: 75, Issue:11-12

    Sepsis-induced lung injury was the most common cause of death in patients. Topiroxostat, a novel xanthine oxidoreductase inhibitors, possessed obvious organ protectives effects. Xanthine oxidase played a vital role in acute lung injury. The study aimed to investigate the roles of Topiroxostat in sepsis-induced lung injury. The sepsis rats were established using cecum ligation and perforation. The lung damage induced by sepsis was evaluated by Hematoxylin and Eosin staining and lung tissue wet to dry ratio. The oxidative stress was detected by measurement of reactive oxygen species, malondialdehyde, myeloperoxidase and superoxide dismutase (SOD). The pro-inflammatory mediators, tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and monocyte chemotactic protein 1, were measured by Enzyme-Linked Immunosorbent Assay. The cell apoptosis in lung was detected by TUNNEL staining and western blot analysis of apoptosis-related proteins including pro-apoptosis proteins, Bax, cleaved caspase9, cleaved caspase3 and anti-apoptosis protein Bcl2. The results showed that Topiroxostat significantly reduced lung damage, along with decreased oxidative stress, inflammation response and apoptosis in sepsis rats. Topiroxostat exerted markedly protective effects in sepsis-induced lung injury and could be an antioxidant in treating sepsis-induced lung injury.

    Topics: Animals; Antioxidants; Apoptosis; Disease Models, Animal; Gene Expression Regulation; Humans; Inflammation; Interleukin-1beta; Lung Injury; Nitriles; Oxidative Stress; Peroxidase; Pyridines; Rats; Sepsis; Superoxide Dismutase; Tumor Necrosis Factor-alpha

2020
Establishment of simultaneous treatment model with citrate for preventing nephropathy induced by FYX-051, a xanthine oxidoreductase inhibitor, in rats.
    Drug and chemical toxicology, 2011, Volume: 34, Issue:2

    As a precedent study for elucidating the mechanism of possible urinary bladder carcinogenesis due to xanthine crystals induced by FYX-051, a xanthine oxidoreductase inhibitor, we have determined the experimental conditions suitable for the 52-week simultaneous treatment with citrate in F344 rats. Simultaneous treatment with citrate and FYX-051 produced both increased urinary citrate excretion and suppression of urinary xanthine deposition at around 4 hours after a single dosing, but these effects disappeared 2 hours later, indicating a lack of the durability of citrate effects. Next, we carried out a 7-day simultaneous treatment study by two daily treatments, that is, FYX-051 (6 mg/kg) and citrate (2,000 mg/kg), followed by citrate-alone treatment, under the conditions of selected dosing intervals, the second dose of citrate, and dosing volume. As a result, the dosing interval of citrate was found to be optimal at 4 hours, but not at 3 or 5 hours, because this treatment completely inhibited intrarenal xanthine deposition. The dose of citrate for the second treatment and the dosing volume were found to be sufficient at 1,500 mg/kg and 10 mL/kg, respectively. Subsequently, a 4-week study by simultaneous treatment at 3 mg/kg of FYX-051 and citrate (2,000 mg/kg) + citrate (1,500 mg/kg), under the improved conditions, revealed that renal lesions could be drastically inhibited. Thus, the present study demonstrated that the interval of two citrate treatments is pivotal and indicated that the improved model would be useful for the mechanistic study of FYX-051-induced urinary bladder carcinogenesis because of an easier treatment method than our previous model.

    Topics: Animals; Chelating Agents; Citric Acid; Disease Models, Animal; Enzyme Inhibitors; Kidney Diseases; Male; Nitriles; Pyridines; Rats; Rats, Inbred F344; Time Factors; Xanthine; Xanthine Dehydrogenase

2011