topiramate has been researched along with Morphine-Dependence* in 2 studies
2 other study(ies) available for topiramate and Morphine-Dependence
Article | Year |
---|---|
Topiramate-chitosan nanoparticles prevent morphine reinstatement with no memory impairment: Dopaminergic and glutamatergic molecular aspects in rats.
Besides their clinical application, chronic misuse of opioids has often been associated to drug addiction due to their addictive properties, underlying neuroadaptations of AMPA glutamate-receptor-dependent synaptic plasticity. Topiramate (TPM), an AMPAR antagonist, has been used to treat psychostimulants addiction, despite its harmful effects on memory. This study aimed to evaluate the effects of a novel topiramate nanosystem on molecular changes related to morphine reinstatement. Rats were previously exposed to morphine in conditioned place preference (CPP) paradigm and treated with topiramate-chitosan nanoparticles (TPM-CS-NP) or non-encapsulated topiramate in solution (S-TPM) during CPP extinction; following memory performance evaluation, they were re-exposed to morphine reinstatement. While morphine-CPP extinction was comparable among all experimental groups, TPM-CS-NP treatment prevented morphine reinstatement, preserving memory performance, which was impaired by both morphine-conditioning and S-TPM treatment. In the NAc, morphine increased D1R, D2R, D3R, DAT, GluA1 and MOR immunoreactivity. It also increased D1R, DAT, GluA1 and MOR in the dorsal hippocampus. TPM-CS-NP treatment decreased D1R, D3R and GluA1 and increased DAT in the NAc, decreasing GluA1 and increasing D2 and DAT in the dorsal hippocampus. Taken together, we may infer that TPM-CS-NP treatment was able to prevent the morphine reinstatement without memory impairment. Therefore, TPM-CS-NP may be considered an innovative therapeutic tool due to its property to prevent opioid reinstatement because it acts modifying both dopaminergic and glutamatergic neurotransmission, which are commonly related to morphine addiction. Topics: Analgesics, Opioid; Animals; Chitosan; Conditioning, Psychological; Dopamine; Drug Therapy, Combination; Extinction, Psychological; Glutamic Acid; Male; Memory; Morphine; Morphine Dependence; Nanoparticles; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Dopamine; Topiramate | 2021 |
Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus.
Morphine withdrawal is associated with a hyperactivity of locus coeruleus (LC) neurons by an elevated glutamate neurotransmission in this nucleus. We postulate that reductions in the amount of glutamate in the LC by enhancing its reuptake or inhibiting its release could attenuate the behavioral and cellular consequences of morphine withdrawal.. We investigated the effect of chronic treatment with ceftriaxone (CFT), an excitatory amino acid transporter (EAAT2) enhancer, and acute administration of topiramate (TPM), a glutamate release inhibitor, on morphine withdrawal syndrome and withdrawal-induced glutamate receptor (GluR) desensitization in LC neurons from morphine-dependent rats.. Morphine withdrawal behavior was measured after naltrexone administration in rats implanted with a morphine (200 mg kg(-1)) emulsion for 3 days. GluR desensitization in the LC was assessed by performing concentration-effect curves for glutamate by extracellular electrophysiological recordings in vitro.. Treatments with CFT or TPM reduced, in a dose-related manner, the total behavioral score of naltrexone-precipitated morphine withdrawal. CFT and TPM, at doses that were effective in behavioral tests, also reduced the induction of GluR desensitization normally occurring in LC neurons from morphine-dependent rats. Acute treatment with the specific EAAT2 inhibitor dihydrokainic acid (DHK) prevented the effect of CFT on withdrawal syndrome and GluR desensitization. Perfusion with TPM inhibited KCl-evoked but not glutamate-induced activation of LC neurons in vitro.. Our results suggest that a reduction of synaptic concentrations of glutamate by enhancing EAAT2-mediated uptake or inhibiting glutamate release alleviates the behavioral response and the cellular changes in the LC during opiate withdrawal. Topics: Analgesics, Opioid; Animals; Ceftriaxone; Fructose; Glutamic Acid; Locus Coeruleus; Male; Morphine Dependence; Neurons; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Substance Withdrawal Syndrome; Topiramate | 2015 |