tolserine has been researched along with Alzheimer-Disease* in 2 studies
1 review(s) available for tolserine and Alzheimer-Disease
Article | Year |
---|---|
Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease.
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD. Topics: Aged; Alzheimer Disease; Carbamates; Cholinesterase Inhibitors; Humans; Ligands | 2022 |
1 other study(ies) available for tolserine and Alzheimer-Disease
Article | Year |
---|---|
Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer therapeutic agent, tolserine.
Characterization of the kinetic parameters of tolserine, a novel acetylcholinesterase (AChE) inhibitor of potential in the therapy of Alzheimer's disease, to inhibit purified human erythrocyte AChE was undertaken for the first time. An IC(50) value was estimated by three methods. Its mean value was found to be 8.13 nM, whereas the IC(100) was observed to be 25.5 nM as calculated by single graphical method. The Michaelis-Menten constant (K(m)) for the hydrolysis of the substrate acetylthiocholine iodide was found to be 0.08 mM. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition was of the partial non-competitive type. The value of K(i) was estimated as 4.69 nM by the primary and secondary replots of the Dixon as well as secondary replots of the Lineweaver-Burk plot. Four new kinetic constants were also investigated by polynomial regression analysis of the relationship between the apparent K(i) (K(Iapp)) and substrate concentration, which may open new avenues for the kinetic study of the inhibition of several enzymes by a wide variety of inhibitors in vitro. Tolserine proved to be a highly potent inhibitor of human AChE compared to its structural analogues physostigmine and phenserine. Topics: Acetylcholinesterase; Alzheimer Disease; Binding, Competitive; Cholinesterase Inhibitors; Humans; Kinetics; Physostigmine | 2000 |