tolcapone and Neurodegenerative-Diseases
tolcapone has been researched along with Neurodegenerative-Diseases* in 2 studies
Other Studies
2 other study(ies) available for tolcapone and Neurodegenerative-Diseases
Article | Year |
---|---|
General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein.
Amyloid self-assembly is pathologically linked to many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). While many inhibitors have been developed individually for specific amyloid proteins, there are a few effective platforms to screen on a large scale general amyloid inhibitors against different amyloid proteins. Herein, we developed a new class of amyloid inhibitor probes by site-specific conjugation of aggregation-induced emission (AIE) molecules with amyloid proteins (i.e., AIE@amyloid probes) to realize a high-throughput screening of small-molecule inhibitors. Optimization of site-specific AIE conjugation with two amyloid proteins, amyloid-β protein (Aβ) and α-synuclein (αSN), enabled us to retain their high amyloidogenic properties; i.e., AIE-amyloid probes alone exhibited strong fluorescence due to amyloid-like aggregation, but they showed no fluorescence in the presence of amyloid inhibitors to prevent amyloid aggregation. From integration of AIE@amyloid probes and computational virtual screening from a large drug database, it was found that tolcapone possessed a dual inhibition against the aggregation and cytotoxicity of both Aβ and αSN. More importantly, tolcapone significantly improved the spatial cognition and recognition of Aβ-treated mice. This work represents an innovative attempt to design an AIE-based anti-amyloid drug platform for identifying new small-molecule inhibitors against amyloidogenesis in both AD and PD or other amyloid diseases. Topics: alpha-Synuclein; Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Amyloidogenic Proteins; Animals; Mice; Molecular Dynamics Simulation; Neurodegenerative Diseases; Parkinson Disease; Tolcapone | 2020 |
Cerebrospinal fluid 3,4-dihydroxyphenylacetic acid level after tolcapone administration as an indicator of nigrostriatal degeneration.
The development of reliable biological markers of nigrostriatal degeneration has important implications from both experimental and clinical viewpoints, since such biomarkers could be used for diagnostic and monitoring purposes in models of parkinsonism as well as in Parkinson's disease patients. In this study, levels of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the cerebrospinal fluid (CSF) of normal and parkinsonian squirrel monkeys in order to assess their reliability as indicators of nigrostriatal injury. In particular, we tested the hypothesis that these measurements may become more accurate by inhibiting catecholamine-O-methyltransferase (COMT) activity and therefore blocking the conversion of DOPAC to homovanillic acid. Oral administration of the COMT inhibitor tolcapone (2 doses of 15 mg/kg each with a 4-h interval) significantly reduced enzyme activity in the monkey brain. Tolcapone treatment enhanced CSF DOPAC concentrations in unlesioned animals (by approximately four times) as well as monkeys rendered parkinsonian after severe nigrostriatal dopaminergic injury caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Importantly, however, COMT inhibition greatly magnified the differences in CSF DOPAC levels between control and parkinsonian monkeys, since MPTP-induced DOPAC depletion was 35% in the absence vs >60% in the presence of tolcapone. Thus, tolcapone administration enhances the detection of DOPAC in the CSF and, by doing so, improves the reliability of CSF DOPAC as a marker of nigrostriatal degeneration. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Antiparkinson Agents; Benzophenones; Biomarkers; Catechol O-Methyltransferase; Corpus Striatum; Disease Models, Animal; Dopamine; Enzyme Activation; Female; Homovanillic Acid; Male; Neurodegenerative Diseases; Nitrophenols; Parkinsonian Disorders; Predictive Value of Tests; Putamen; Saimiri; Substantia Nigra; Tolcapone | 2003 |