tofacitinib has been researched along with Lung-Neoplasms* in 5 studies
1 trial(s) available for tofacitinib and Lung-Neoplasms
Article | Year |
---|---|
Malignancy risk with tofacitinib versus TNF inhibitors in rheumatoid arthritis: results from the open-label, randomised controlled ORAL Surveillance trial.
To evaluate malignancies and their associations with baseline risk factors and cardiovascular risk scores with tofacitinib versus tumour necrosis factor inhibitors (TNFi) in patients with rheumatoid arthritis (RA).. In an open-label, randomised controlled trial (ORAL Surveillance; NCT02092467), 4362 patients with RA aged ≥50 years with ≥1 additional cardiovascular risk factor received tofacitinib 5 (N=1455) or 10 mg two times per day (N=1456) or TNFi (N=1451). Incidence rates (IRs; patients with first events/100 patient-years) and HRs were calculated for adjudicated malignancies excluding non-melanoma skin cancer (NMSC), NMSC and subtypes. Post hoc analyses for malignancies excluding NMSC, lung cancer and NMSC included risk factors identified via simple/multivariable Cox models and IRs/HRs categorised by baseline risk factors, history of atherosclerotic cardiovascular disease (HxASCVD) and cardiovascular risk scores.. IRs for malignancies excluding NMSC and NMSC were higher with tofacitinib (combined and individual doses) versus TNFi. Risk of lung cancer (most common subtype with tofacitinib) was higher with tofacitinib 10 mg two times per day versus TNFi. In the overall study population, the risk of malignancies excluding NMSC was similar between both tofacitinib doses and TNFi until month 18 and diverged from month 18 onwards (HR (95% CIs) for combined tofacitinib doses: 0.93 (0.53 to 1.62) from baseline to month 18 vs 1.93 (1.22 to 3.06) from month 18 onwards, interaction p=0.0469). Cox analyses identified baseline risk factors across treatment groups for malignancies excluding NMSC, lung cancer and NMSC; interaction analyses generally did not show statistical evidence of interaction between treatment groups and risk factors. HxASCVD or increasing cardiovascular risk scores were associated with higher malignancy IRs across treatments.. Risk of malignancies was increased with tofacitinib versus TNFi, and incidence was highest in patients with HxASCVD or increasing cardiovascular risk. This may be due to shared risk factors for cardiovascular risk and cancer.. NCT02092467, NCT01262118, NCT01484561, NCT00147498, NCT00413660, NCT00550446, NCT00603512, NCT00687193, NCT01164579, NCT00976599, NCT01059864, NCT01359150, NCT02147587, NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385, NCT01039688, NCT02281552, NCT02187055, NCT02831855, NCT00413699, NCT00661661. Topics: Antirheumatic Agents; Arthritis, Rheumatoid; Humans; Lung Neoplasms; Pyrroles; Risk Factors; Skin Neoplasms; Treatment Outcome; Tumor Necrosis Factor Inhibitors | 2023 |
4 other study(ies) available for tofacitinib and Lung-Neoplasms
Article | Year |
---|---|
First use of tofacitinib to treat an immune checkpoint inhibitor-induced arthritis.
Immune checkpoint inhibitors have revolutionised cancer treatment; however, immune-related adverse events do occur, with up to 7% developing inflammatory arthritis. Common rheumatoid arthritis therapies such as methotrexate, prednisolone and biologics have been used to treat this arthritis in small, uncontrolled case series with varying success. In this case of personalised medicine, we report the first use of tofacitinib, a small molecular inhibitor of the Janus kinase-signal transducer and activator of transcription pathway, to treat checkpoint inhibitor-related inflammatory arthritis. This resulted in a rapid clinical response and complete, sustained remission of the arthritis with associated marked reduction in synovial molecular and cellular immune response. Topics: Arthritis, Rheumatoid; Humans; Immune Checkpoint Inhibitors; Lung Neoplasms; Male; Middle Aged; Piperidines; Precision Medicine; Protein Kinase Inhibitors; Pyrimidines | 2021 |
Effect of platinum‑based chemotherapy on the expression of natural killer group 2 member D ligands, programmed cell death‑1 ligand 1 and HLA class I in non‑small cell lung cancer.
Platinum‑based chemotherapy improves the clinical outcome of patients with non‑small cell lung cancer (NSCLC), although tumors often become refractory after treatment. Immunohistochemical staining was performed to investigate the expression levels of natural killer group 2 member D (NKG2D) ligands, programmed cell death‑1 ligand 1 (PD‑L1), and human leucocyte antigen (HLA)‑class I in tissue samples collected from 10 NSCLC patients who received platinum‑based chemotherapy followed by surgery. Additionally, the effects of repeated exposure to cisplatin on the expression of NKG2D ligands, PD‑L1 and HLA‑class I in NSCLC cell lines were assessed by flow cytometry. We found upregulation of PD‑L1 or downregulation of NKG2D ligands in 5 of the 10 NSCLC cases, leading to the attenuation of NK cell‑mediated tumor cell death. Moreover, upregulation of PD‑L1 or downregulation of HLA‑class I were observed in 6 cases, supporting tumor escape from T cell immunity. An in vitro assay showed that repeated exposure to cisplatin enhanced the expression of PD‑L1 and NKG2D ligands in NSCLC cell lines. Notably, interferon gamma (IFNγ) stimuli enhanced PD‑L1 expression while attenuated that of NKG2D ligands in NSCLC cell lines, which mimicked the results of the clinical study. Both IFNγ‑induced upregulation of PD‑L1 and downregulation of NKG2D ligands were blocked by the JAK‑STAT inhibitor tofacitinib. These findings suggested that the expression levels of NKG2D ligands, PD‑L1 and HLA‑class I in residual tumors after chemotherapy were affected by host immunity, resulting in an immunoescape phenotype. Blocking IFNγ‑induced tumor immunoescape by a JAK‑STAT inhibitor might be a promising treatment strategy for NSCLC. Topics: Aged; Antineoplastic Agents; Apoptosis; B7-H1 Antigen; Biomarkers, Tumor; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Cisplatin; Cytotoxicity, Immunologic; Drug Resistance, Neoplasm; Drug Therapy, Combination; Female; Follow-Up Studies; Gene Expression Regulation, Neoplastic; GPI-Linked Proteins; Histocompatibility Antigens Class I; Humans; Intercellular Signaling Peptides and Proteins; Janus Kinases; Killer Cells, Natural; Ligands; Lung Neoplasms; Male; Middle Aged; NK Cell Lectin-Like Receptor Subfamily K; Piperidines; Prognosis; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; STAT Transcription Factors; Tumor Cells, Cultured | 2019 |
The target landscape of clinical kinase drugs.
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |
Novel carbazole inhibits phospho-STAT3 through induction of protein-tyrosine phosphatase PTPN6.
The aberrant activation of STAT3 occurs in many human cancers and promotes tumor progression. Phosphorylation of a tyrosine at amino acid Y705 is essential for the function of STAT3. Synthesized carbazole derived with fluorophore compound 12 was discovered to target STAT3 phosphorylation. Compound 12 was found to inhibit STAT3-mediated transcription as well as to reduce IL-6 induced STAT3 phosphorylation in cancer cell lines expressing both elevated and low levels of phospho-STAT3 (Y705). Compound 12 potently induced apoptosis in a broad number of TNBC cancer cell lines in vitro and was effective at inhibiting the in vivo growth of human TNBC xenograft tumors (SUM149) without any observed toxicity. Compound 12 also effectively inhibited the growth of human lung tumor xenografts (A549) harboring aberrantly active STAT3. In vitro and in vivo studies showed that the inhibitory effects of 12 on phospho-STAT3 were through up-regulation of the protein-tyrosine phosphatase PTPN6. Our present studies strongly support the continued preclinical evaluation of compound 12 as a potential chemotherapeutic agent for TNBC and cancers with constitutive STAT3 signaling. Topics: Animals; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Carbazoles; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Screening Assays, Antitumor; Enzyme Induction; Female; Heterografts; Humans; Interleukin-6; Lung Neoplasms; Mice, Inbred BALB C; Mice, Nude; Naphthalenesulfonates; Neoplasm Transplantation; Phosphorylation; Protein Tyrosine Phosphatase, Non-Receptor Type 6; STAT3 Transcription Factor; Structure-Activity Relationship; Transcription, Genetic | 2014 |