tocotrienol--delta has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 5 studies
4 trial(s) available for tocotrienol--delta and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Comparison of delta-tocotrienol and alpha-tocopherol effects on hepatic steatosis and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: A randomized double-blind active-controlled trial.
We aimed to compare the efficacy of δ-tocotrienol with α-tocopherol in the treatment of patients with non-alcoholic fatty liver disease (NAFLD).. This study was a double-blinded, active-controlled trial. The patients with NAFLD were randomly assigned to receive either δ-tocotrienol 300 mg or α-tocopherol 268 mg twice daily for 48 weeks.. The primary endpoints were change from baseline in fatty liver index (FLI), liver-to-spleen attenuation ratio (L/S ratio), and homeostatic model assessment for insulin resistance (HOMA-IR) at 48 weeks. Key secondary endpoints were change in markers of inflammation, oxidative stress, and hepatocyte apoptosis. Clinical assessment, biochemical analysis, and computed tomography scan of the liver were conducted at baseline, 24 and 48 weeks.. A total of 100 patients (δ-tocotrienol = 50, α-tocopherol = 50) were randomized and included in the intention to treat analysis. Compared with baseline, there was a significant improvement (p < .001) in FLI, L/S ratio, HOMA-IR, and serum malondialdehyde in both groups at 48 weeks that was not significant between the two groups. However, there was a significantly greater decrease in body weight, serum interleukin-6, tumor necrosis factor-alpha, leptin, cytokeratin-18, and increase in adiponectin in the δ-tocotrienol group compared to the α-tocopherol group at 48 weeks (p < .05). No adverse events were reported.. δ-tocotrienol and α-tocopherol exerted equally beneficial effects in terms of improvement in hepatic steatosis, oxidative stress, and insulin resistance in patients with NAFLD. However, δ-tocotrienol was more potent than α-tocopherol in reducing body weight, inflammation, and apoptosis associated with NAFLD. TRIAL REGISTRATION: Sri Lankan Clinical Trials Registry (https://slctr.lk/SLCTR/2019/038). Topics: alpha-Tocopherol; Biomarkers; Body Weight; Double-Blind Method; Humans; Inflammation; Insulin Resistance; Liver; Non-alcoholic Fatty Liver Disease; Vitamin E | 2022 |
Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression.
Topics: alpha-Tocopherol; Biomarkers; Circulating MicroRNA; Humans; Inflammation; Insulin Resistance; Liver; MicroRNAs; Non-alcoholic Fatty Liver Disease | 2022 |
Delta-tocotrienol supplementation improves biochemical markers of hepatocellular injury and steatosis in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled trial.
The aim of this study was to examine the effects of delta-tocotrienol (δ-tocotrienol) supplementation on biochemical markers of hepatocellular injury and steatosis in patients with nonalcoholic fatty liver disease (NAFLD).. The study design was a two-group, randomized, double-blind, placebo-controlled trial. The patients with NAFLD were randomly assigned to receive δ-tocotrienol 300 mg twice daily or placebo for 24 weeks.. The primary endpoints were change from baseline in fatty liver index (FLI) and homeostasis model of insulin resistance (HOMA-IR) after 24 weeks. Secondary endpoints included change from baseline in high sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), alanine transaminase (ALT), aspartate transaminase (AST) and grading of hepatic steatosis on ultrasound. Between-group differences were tested for significance using ANCOVA. Mean differences (MD) with 95 % CIs are reported.. A total of 71 patients (tocotrienol=35, placebo=36) were randomized and included in the intention to treat analysis. Compared with placebo, δ-tocotrienol significantly reduced (MD [95 % CI]) FLI (-8.52 [-10.7, -6.3]; p < 0.001); HOMA-IR (-0.37 [-0.53, -0.21]; p < 0.001), hs-CRP (-0.61[-0.81, -0.42]; p < 0.001), MDA (-0.91 [-1.20, -0.63]; p < 0.001), ALT (-8.86 [-11.5, -6.2]; p < 0.001) and AST (-6.6 [-10.0, -3.08]; p < 0.001). Hepatic steatosis was also reduced by a significantly greater extent with tocotrienol than with placebo (p =0.047). No adverse events were reported.. δ-tocotrienol effectively improved biochemical markers of hepatocellular injury and steatosis in patients with NAFLD. δ-tocotrienol supplementation might be considered as a therapeutic option in the management of patients with NAFLD.. Sri Lankan Clinical Trials Registry (SLCTR/2015/023, 2015-10-03). Topics: Adult; Aged; Biomarkers; Double-Blind Method; Female; Humans; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Vitamin E; Young Adult | 2020 |
Effects of Delta-tocotrienol Supplementation on Liver Enzymes, Inflammation, Oxidative stress and Hepatic Steatosis in Patients with Nonalcoholic Fatty Liver Disease.
Non-alcoholic fatty liver disease (NAFLD) is a growing public health problem worldwide and is associated with increased morbidity and mortality. Currently, there is no definitive treatment for this disease. δ-Tocotrienol has potent anti-inflammatory and antioxidant properties and may reduce liver injury in NAFLD. The present study aims to evaluate the efficacy and safety of δ-tocotrienol in the treatment of NAFLD.. The present study was a randomized, double-blind, placebo-controlled pilot study conducted in patients aged > 20 years, belonging to both sexes, having ultrasound-proven fatty liver disease, having a fatty liver index (FLI) of ≥ 60, and persistent elevation of alanine transaminase. A total of 71 patients were assigned to receive either oral δ-tocotrienol (n=35, 300 mg twice daily) or placebo (n=36) for 12 weeks. At the baseline and at the end of the study, clinical and biochemical parameters, including lipid profile, liver function tests, high-sensitivity C-reactive protein (hs-CRP), and malondialdehyde (MDA) were measured. Body mass index and FLI were calculated, and ultrasound grading of hepatic steatosis was performed.. Out of 71 enrolled patients, 64 patients, 31 in the δ-tocotrienol group and 33 in the placebo group, completed the study. After 12 weeks of supplementation, δ-tocotrienol showed greater efficacy than placebo by decreasing serum aminotransferases, hs-CRP, MDA, and FLI score (p<0.001). However, it did not improve hepatic steatosis on ultrasound examination. No adverse effects were reported.. δ-Tocotrienol was safe, and it effectively improved aminotransferase levels and inflammatory and oxidative stress markers in patients with NAFLD. Large-scale randomized clinical trials are warranted to further support these findings. Topics: Adult; Alanine Transaminase; Anti-Inflammatory Agents; Antioxidants; Aspartate Aminotransferases; Biomarkers; Dietary Supplements; Double-Blind Method; Fatty Liver; Female; Humans; Inflammation; Liver; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Pilot Projects; Treatment Outcome; Vitamin E | 2018 |
1 other study(ies) available for tocotrienol--delta and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice.
Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue. Topics: Adipocytes; Adipose Tissue, White; Animals; Body Weight; Diet, High-Fat; Lipid Metabolism; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Obesity; Panniculitis; Triglycerides; Vitamin E | 2017 |