tocotrienol--delta and Carcinoma--Pancreatic-Ductal

tocotrienol--delta has been researched along with Carcinoma--Pancreatic-Ductal* in 2 studies

Trials

1 trial(s) available for tocotrienol--delta and Carcinoma--Pancreatic-Ductal

ArticleYear
A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia.
    EBioMedicine, 2015, Volume: 2, Issue:12

    Vitamin E δ-tocotrienol (VEDT), a natural vitamin E from plants, has shown anti-neoplastic and chemoprevention activity in preclinical models of pancreatic cancer. Here, we investigated VEDT in patients with pancreatic ductal neoplasia in a window-of-opportunity preoperative clinical trial to assess its safety, tolerability, pharmacokinetics, and apoptotic activity.. Patients received oral VEDT at escalating doses (from 200 to 3200 mg) daily for 13 days before surgery and one dose on the day of surgery. Dose escalation followed a three-plus-three trial design. Our primary endpoints were safety, VEDT pharmacokinetics, and monitoring of VEDT-induced neoplastic cell apoptosis (ClinicalTrials.gov number NCT00985777).. In 25 treated patients, no dose-limiting toxicity was encountered; thus no maximum-tolerated dose was reached. One patient had a drug-related adverse event (diarrhea) at a 3200-mg daily dose level. The effective half-life of VEDT was ~ 4 h. VEDT concentrations in plasma and exposure profiles were quite variable but reached levels that are bioactive in preclinical models. Biological activity, defined as significant induction of apoptosis in neoplastic cells as measured by increased cleaved caspase-3 levels, was seen in the majority of patients at the 400-mg to 1600-mg daily dose levels.. VEDT from 200 to 1600 mg daily taken orally for 2 weeks before pancreatic surgery was well tolerated, reached bioactive levels in blood, and significantly induced apoptosis in the neoplastic cells of patients with pancreatic ductal neoplasia. These promising results warrant further clinical investigation of VEDT for chemoprevention and/or therapy of pancreatic cancer.

    Topics: Aged; Aged, 80 and over; Antineoplastic Agents; Apoptosis; Biomarkers; Carcinoma, Pancreatic Ductal; Female; Humans; Male; Middle Aged; Pancreatic Neoplasms; Preoperative Care; Treatment Outcome; Vitamin E

2015

Other Studies

1 other study(ies) available for tocotrienol--delta and Carcinoma--Pancreatic-Ductal

ArticleYear
Prolonged survival and delayed progression of pancreatic intraepithelial neoplasia in LSL-KrasG12D/+;Pdx-1-Cre mice by vitamin E δ-tocotrienol.
    Carcinogenesis, 2013, Volume: 34, Issue:4

    The highly lethal nature of pancreatic cancer and the increasing recognition of high-risk individuals have made research into chemoprevention a high priority. Here, we tested the chemopreventive activity of δ-tocotrienol, a bioactive vitamin E derivative extracted from palm fruit, in the LSL-Kras(G12D/+);Pdx-1-Cre pancreatic cancer mouse model. At 10 weeks of age, mice (n = 92) were randomly allocated to three groups: (i) no treatment; (ii) vehicle and (iii) δ-tocotrienol (200mg/kg × 2/day, PO). Treatment was continued for 12 months. Mice treated with δ-tocotrienol showed increased median survival from the onset of treatment (11.1 months) compared with vehicle-treated mice (9.7 months) and non-treated mice (8.5 months; P < 0.025). Importantly, none of the mice treated with δ-tocotrienol harbored invasive cancer compared with 10% and 8% in vehicle-treated and non-treated mice, respectively. Furthermore, δ-tocotrienol treatment also resulted in significant suppression of mouse pancreatic intraepithelial neoplasm (mPanIN) progression compared with vehicle-treated and non-treated mice: mPanIN-1: 47-50% (P < 0.09), mPanIN-2: 6-11% (P < 0.001), mPanIN-3: 3-15% (P < 0.001) and invasive cancer: 0-10% (P < 0.001). δ-Tocotrienol treatment inhibited mutant Kras-driven pathways such as MEK/ERK, PI3K/AKT and NF-kB/p65, as well as Bcl-xL and induced p27. δ-Tocotrienol also induced biomarkers of apoptosis such as Bax and activated caspase 3 along with an increase in plasma levels of CK18. In summary, δ-tocotrienol's ability to interfere with oncogenic Kras pathways coupled with the observed increase in median survival and significant delay in PanIN progression highlights the chemopreventative potential of δ-tocotrienol and warrants further investigation of this micronutrient in individuals at high risk for pancreatic cancer.

    Topics: Animals; Apoptosis; bcl-X Protein; Biomarkers, Tumor; Carcinoma in Situ; Carcinoma, Pancreatic Ductal; Caspase 3; Disease Models, Animal; Disease Progression; Extracellular Signal-Regulated MAP Kinases; Genotype; Homeodomain Proteins; Mice; Pancreatic Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); Survival; Trans-Activators; Transcription Factor RelA; Vitamin E

2013