tnp-351 and Leukemia--Lymphoid

tnp-351 has been researched along with Leukemia--Lymphoid* in 1 studies

Other Studies

1 other study(ies) available for tnp-351 and Leukemia--Lymphoid

ArticleYear
Novel pyrrolo[2,3-d]pyrimidine antifolate TNP-351: cytotoxic effect on methotrexate-resistant CCRF-CEM cells and inhibition of transformylases of de novo purine biosynthesis.
    Cancer chemotherapy and pharmacology, 1994, Volume: 34, Issue:4

    N-[4-[3-(2,4-Diamino-7H-pyrrolo[2,3-d]pyrimidin-5- yl)propyl]benzoyl]-L-glutamic acid (TNP-351), characterized by a pyrrolo[2,3-d]pyrimidine ring, is a novel antifolate that exhibits potent antitumor activities against mammalian solid tumors. The mechanism of action of TNP-351 was evaluated using some methotrexate-resistant CCRF-CEM human lymphoblastic leukemia cell lines as well as partially purified enzymes folylpolyglutamate synthetase (FPGS), aminoimidazolecarboxamide ribonucleotide transformylase (AICARTFase), and glycinamide ribonucleotide transformylase (GARTFase) from parent CCRF-CEM cells. TNP-351 was found to inhibit the growth of L1210 and CCRF-CEM cells in culture, with the doses effective against 50% of the cells (ED50 values) being 0.79 and 2.7 nM, respectively. The growth inhibition caused by TNF-351 was reversed by leucovorin or a combination of hypoxanthine and thymidine. The methotrexate-resistant CCRF-CEM cell line, which has an impaired methotrexate transport, showed less resistance to TNP-351 than to methotrexate. TNP-351 was also found to be an excellent substrate for FPGS with a Michaelis constant (Km) of 1.45 microM and a maximum of velocity (Vmax) of 1,925 pmol h-1 mg-1. Inhibitory activities of TNF-351-Gn (n = 1-6) for AICARTFase were found to be significantly enhanced with increasing glutamyl chain length [inhibition constants (Ki): G1, 52 microM; G6, 0.07 microM]. Neither TNP-351 nor its polyglutamates were very strong inhibitors of GARTFase. These findings have significant implications regarding the mechanism of action of TNP-351.

    Topics: Acyltransferases; Animals; Cell Division; Drug Resistance; Folic Acid Antagonists; Humans; Hydroxymethyl and Formyl Transferases; Leukemia, Lymphoid; Methotrexate; Mice; Peptide Synthases; Phosphoribosylaminoimidazolecarboxamide Formyltransferase; Phosphoribosylglycinamide Formyltransferase; Tumor Cells, Cultured

1994