tn14003 and Lung-Neoplasms

tn14003 has been researched along with Lung-Neoplasms* in 5 studies

Reviews

1 review(s) available for tn14003 and Lung-Neoplasms

ArticleYear
Potential of CXCR4 antagonists for the treatment of metastatic lung cancer.
    Expert review of anticancer therapy, 2011, Volume: 11, Issue:4

    Despite advances in surgery, chemotherapy and radiotherapy over the last decades, the death rate from lung cancer has remained largely unchanged, which is mainly due to metastatic disease. Because of the overall poor prognosis, new treatment strategies for lung cancer patients are urgently needed, and targeting CXCR4 constitutes such a novel, attractive strategy. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokine receptors and adhesion molecules. Lung cancer cells express CXCR4 (CD184), a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the tumor microenvironment constitutively secrete stromal cell-derived factor-1 (SDF-1/CXCL12), the ligand for CXCR4. Activation of CXCR4 induces lung cancer cell migration and adhesion to stromal cells, which in turn provides growth- and drug-resistance signals to the tumor cells. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogues (TN14003/BKT140), can disrupt CXCR4-mediated tumor cell adhesion to stromal cells and sensitize lung cancer cells to cytotoxic drugs. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach in small-cell lung cancer and non-small-cell lung cancer. In this article, we summarize data about the cellular and molecular microenvironment in small-cell lung cancer and non-small-cell lung cancer, as well as the role of CXCR4 in tumor-stroma crosstalk. In addition, we review the current status of the preclinical and clinical development of CXCR4 antagonists.

    Topics: Animals; Antineoplastic Agents; Benzylamines; Chemokine CXCL12; Cyclams; Heterocyclic Compounds; Humans; Lung Neoplasms; Neoplasm Metastasis; Peptides; Receptors, CXCR4; Tumor Microenvironment

2011

Other Studies

4 other study(ies) available for tn14003 and Lung-Neoplasms

ArticleYear
CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients.
    Oncogene, 2017, 03-02, Volume: 36, Issue:9

    The CXCR4 receptor and its ligand CXCL12 (also named stromal cell-derived factor 1, SDF1) have a critical role in chemotaxis and homing, key steps in cancer metastasis. Although myofibroblasts expressing CXCL12 are associated with the presence of axillary metastases in HER2 breast cancers (BC), the therapeutic interest of targeting CXCR4/CXCL12 axis in the different BC subtypes remains unclear. Here, we investigate this question by testing antitumor activity of CXCR4 inhibitors in patient-derived xenografts (PDX), which faithfully reproduce human tumor properties. We observed that two CXCR4 inhibitors, AMD3100 and TN14003, efficiently impair tumor growth and metastasis dissemination in both Herceptin-sensitive and Herceptin-resistant HER2 BC. Conversely, blocking CXCR4/CXCL12 pathway in triple-negative (TN) BC does not reduce tumor growth, and can even increase metastatic spread. Moreover, although CXCR4 inhibitors significantly reduce myofibroblast content in all BC subtypes, they decrease angiogenesis only in HER2 BC. Thus, our findings suggest that targeting CXCR4 could provide some therapeutic interest for HER2 BC patients, whereas it has no impact or could even be detrimental for TN BC patients.

    Topics: Animals; Anti-HIV Agents; Apoptosis; Benzylamines; Biomarkers, Tumor; Breast Neoplasms; Cell Proliferation; Cyclams; Female; Gene Expression Regulation, Neoplastic; Heterocyclic Compounds; Humans; Lung Neoplasms; Mice; Neoplasm Invasiveness; Neovascularization, Pathologic; Peptides; Receptor, ErbB-2; Receptors, CXCR4; Signal Transduction; Triple Negative Breast Neoplasms; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2017
CXCR4 antagonists suppress small cell lung cancer progression.
    Oncotarget, 2016, Dec-20, Volume: 7, Issue:51

    Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis due to early metastatic spread and development of chemoresistance. Playing a key role in tumor-stroma interactions the CXCL12-CXCR4 axis may be involved in both processes and thus represent a promising therapeutic target in SCLC treatment. In this study we investigated the effect of CXCR4 inhibition on metastasis formation and chemoresistance using an orthotopic xenograft mouse model. This model demonstrates regional spread and spontaneous distant metastases closely reflecting the clinical situation in extensive SCLC. Tumor engraftment, growth, metabolism, and metastatic spread were monitored using different imaging techniques: Magnetic Resonance Imaging (MRI), Bioluminescence Imaging (BLI) and Positron Emission Tomography (PET). Treatment of mice bearing chemoresistant primary tumors with the specific CXCR4 inhibitor AMD3100 reduced the growth of the primary tumor by 61% (P<0.05) and additionally suppressed metastasis formation by 43%. In comparison to CXCR4 inhibition as a monotherapy, standard chemotherapy composed of cisplatin and etoposide reduced the growth of the primary tumor by 71% (P<0.01) but completely failed to suppress metastasis formation. Combination of chemotherapy and the CXCR4 inhibitor integrated the highest of both effects. The growth of the primary tumor was reduced to a similar extent as with chemotherapy alone and metastasis formation was reduced to a similar extent as with CXCR4 inhibitor alone. In conclusion, we demonstrate in this orthotopic mouse model that the addition of a CXCR4 inhibitor to chemotherapy significantly reduces metastasis formation. Thus, it might improve the overall therapy response and consequently the outcome of SCLC patients.

    Topics: Animals; Benzylamines; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cisplatin; Cyclams; DNA-Binding Proteins; Drug Resistance, Neoplasm; Etoposide; Heterocyclic Compounds; Humans; Lung Neoplasms; Mice; Mice, Knockout; Neoplasm Metastasis; Nuclear Proteins; Peptides; Receptors, CXCR4; Small Cell Lung Carcinoma; Xenograft Model Antitumor Assays

2016
CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells.
    Oncogene, 2005, Jun-23, Volume: 24, Issue:27

    Small cell lung cancer (SCLC) is an aggressive, rapidly metastazising neoplasm with a high propensity for marrow involvement. SCLC cells express high levels of functional CXCR4 receptors for the chemokine stromal-cell-derived factor-1 (SDF-1/CXCL12). Adhesion of SCLC cells to extracellular matrix or accessory cells within the tumor microenvironment confers resistance to chemotherapy via integrin signaling and thus may be responsible for residual disease and relapses commonly seen in SCLC. We examined the signaling mechanisms that regulate CXCL12-induced adhesion of SCLC cells to fibronectin, collagen, and stromal cells and the effects on SCLC cell chemoresistance. We found that CXCL12-induced integrin activation which resulted in an increased adhesion of SCLC cells to fibronectin and collagen. This was mediated by alpha2, alpha4, alpha5, and beta1 integrins along with CXCR4 activation, which could be inhibited by CXCR4 antagonists. Stromal cells protected SCLC cells from chemotherapy-induced apoptosis, and this protection could also be antagonized by CXCR4 inhibitors. We conclude that activation of integrins and CXCR4 chemokine receptors co-operate in mediating adhesion and survival signals from the tumor microenvironment to SCLC cells. Therefore, CXCR4 antagonists in combination with cytotoxic drugs should be explored in SCLC to overcome CXCL12-mediated adhesion and survival signals in the tumor microenvironment.

    Topics: Apoptosis; Carcinoma, Small Cell; Cell Adhesion; Cell Line, Tumor; Cell Proliferation; Chemokine CXCL12; Chemokines, CXC; Collagen; Drug Resistance, Neoplasm; Etoposide; Fibronectins; Humans; Integrins; Lung Neoplasms; Peptides; Phosphotyrosine; Receptors, CXCR4; rho GTP-Binding Proteins; Signal Transduction

2005
Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4.
    Cancer research, 2004, Jun-15, Volume: 64, Issue:12

    Metastasis shares many similarities with leukocyte trafficking. Among those chemokine receptors thought to be involved in hemopoietic cell homing, stromal cell-derived factor-1 and its receptor CXC chemokine receptor-4 (CXCR4) have received considerable attention. Like hemopoietic cell homing, levels of stromal cell-derived factor-1 are high at sites of breast cancer metastasis including lymph node, lung, liver, and the marrow. Moreover, CXCR4 expression is low in normal breast tissues and high in malignant tumors, suggesting that a blockade of CXCR4 might limit tumor metastasis. We therefore investigated the role of a synthetic antagonist 14-mer peptide (TN14003) in inhibiting metastasis in an animal model. Not only was TN14003 effective in limiting metastasis of breast cancer by inhibiting migration, but it may also prove useful as a diagnostic tool to identify CXCR4 receptor-positive tumor cells in culture and tumors in paraffin-embedded clinical samples.

    Topics: Adult; Animals; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Female; Hematopoietic Stem Cells; Humans; Lung Neoplasms; Mice; Mice, SCID; Neoplasm Metastasis; Peptides; Receptors, CXCR4; Substrate Specificity; Xenograft Model Antitumor Assays

2004