timosaponin-b-ii and Inflammation

timosaponin-b-ii has been researched along with Inflammation* in 4 studies

Other Studies

4 other study(ies) available for timosaponin-b-ii and Inflammation

ArticleYear
Timosaponin B-II alleviates osteoarthritis-related inflammation and extracellular matrix degradation through inhibition of mitogen-activated protein kinases and nuclear factor-κB pathways in vitro.
    Bioengineered, 2022, Volume: 13, Issue:2

    Osteoarthritis (OA), an inflammatory response in chondrocytes, leads to extracellular matrix (ECM) degradation and cartilage destruction. Timosaponin B-II (TB-II) is the main bioactive component of Rhizoma Anemarrhenae with reported antioxidant and anti-inflammatory effects. This study investigated the anti-OA function and mechanism of TB-II on IL-1β-stimulated SW1353 cells and primary rat chondrocytes. We firstly screened the concentration of TB-II in SW1353 cells and primary rat chondrocytes using CCK-8 assay. Thereafter, SW1353 cells and chondrocytes were, respectively, pretreated with TB-II (20 and 40 μg/mL) and TB-II (10 and 30 μg/mL) for 24 h and then stimulated with interleukin 1β (IL-1β, 10 ng/mL) for another 24 hours. Results showed that TB-II suppressed the production of reactive oxygen species, the protein levels of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-stimulated SW1353 cells and chondrocytes. IL-1β-induced high secretion levels of nitric oxide and prostaglandin 2, TNF-α, IL-6 and MCP-1 were down-regulated by TB-II treatment, indicating an anti-inflammatory effect of TB-II on OA

    Topics: Cell Line, Tumor; Extracellular Signal-Regulated MAP Kinases; Humans; Inflammation; MAP Kinase Signaling System; NF-kappa B; Osteoarthritis; Saponins; Steroids

2022
Lipidomics Analysis of Timosaponin BII in INS-1 Cells Induced by Glycolipid Toxicity and Its Relationship with Inflammation.
    Chemistry & biodiversity, 2020, Volume: 17, Issue:4

    Anemarrhena asphodeloides Bunge is a traditional Chinese medicine. The timosaponin BII is one of the most abundant and widely studied active ingredients in Anemarrhena asphodeloides Bunge. Related studies have shown that timosaponin BII has potential value for development and further utilization. The protective effect of timosaponin BII on islet β cells under type 2 diabetes was investigated in the glycolipid toxic INS-1 cell model and possible biomarkers were explored by lipidomics analysis. Timosaponin BII was isolated from Anemarrhena asphodeloides Bunge by polyamide resin and Sephadex LH-20. Then, the glycolipid toxicity INS-1 cell model was established to investigate the protective effect of timosaponin BII. The results showed that timosaponin BII could significantly influence the levels of malondialdehyde (MDA) and glutathione (GSH), thereby restoring the insulin secretion ability and cell viability of model cells. Lipidomics analysis was combined with multivariate statistical analysis for marker selection. The four most common pathological and pharmacological lipid markers were phosphatidylserine (PS), suggesting that timosaponin BII had protective effects on model cells related to the reduction oxidative stress and macrophage inflammation. RAW264.7 macrophages were stimulated by LPS to establish a model of inflammation and study the effect of timosaponin BII on the nodes of NOD-like receptor P3 (NLRP3) inflammasome pathway in the model cells. In conclusion, timosaponin BII may have the effect of protecting INS-1 pancreatic β cells through reducing IL-1β (interleukin-1β) production by inhibiting the NLRP3 inflammasome in macrophage and restoring the insulin secretion ability and cell viability by reducing oxidative stress.

    Topics: Anemarrhena; Animals; Cell Survival; Discriminant Analysis; Glutathione; Glycolipids; Inflammation; Insulin-Secreting Cells; Interleukin-1beta; Lipidomics; Macrophages; Malondialdehyde; Mice; Nitric Oxide; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Principal Component Analysis; Protective Agents; RAW 264.7 Cells; Saponins; Steroids

2020
Characterization of spirostanol glycosides and furostanol glycosides from anemarrhenae rhizoma as dual targeted inhibitors of 5-lipoxygenase and Cyclooxygenase-2 by employing a combination of affinity ultrafiltration and HPLC/MS.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2020, Volume: 77

    Modulation of the arachidonic acid (AA) cascade via 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) represent the two major pathways for treatments of inflammation and pain. The design and development of inhibitors targeting both 5-LOX and COX-2 has gained increasing popularity. As evidenced, 5-LOX and COX-2 dual targeted inhibitors have recently emerged as the front runners of anti-inflammatory drugs with improved efficacy and reduced side effects. Natural products represent a rich resource for the discovery of dual targeted 5-LOX and COX-2 inhibitors. By combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS), an efficient method was developed to identify spirostanol glycosides and furostanol glycosides as the 5-LOX/COX-2 dual inhibitors from saponins extract of Anemarrhenae Rhizoma (SEAR).. A highly efficient method by combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS) was first developed to screen and characterize the 5-LOX/COX-2 dual targeted inhibitors from SEAR. The structures of compounds in the ultrafiltrate were characterized by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). In addition, in vitro 5-LOX/COX-2 inhibition assays and their dual expression in vivo were performed to confirm the inhibitory activities of the compounds screened by AUF-LC-MS. Molecular docking studies with the corresponding binding energy were obtained which fit nicely to both 5-LOX and COX-2 protein cavities and in agreement with our affinity studies.. A total of 5 compounds, timosaponin A-II, timosaponin A-III, timosaponin B-II, timosaponin B-III and anemarrhenasaponin I, were identified as potential 5-LOX/COX-2 dual targeted inhibitors with specific binding values > 1.5 and IC. The present work demonstrated that spirostanol glycoside and furostanol glycoside were identified as two novel classes of dual inhibitors of 5-LOX/COX-2 enzymes by employing a highly efficient screening method of AUF-LC-MS. These natural products represent a novel class of anti-inflammatory agents with the potential of improved efficacy and reduced side effects.

    Topics: Anemarrhena; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonate 5-Lipoxygenase; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Drug Evaluation, Preclinical; Glycosides; Inflammation; Lipoxygenase Inhibitors; Mass Spectrometry; Molecular Docking Simulation; Rats; Rhizome; Saponins; Spirostans; Steroids; Sterols; Ultrafiltration

2020
Timosaponin B-II Ameliorates Palmitate-Induced Insulin Resistance and Inflammation via IRS-1/PI3K/Akt and IKK/NF-[Formula: see text]B Pathways.
    The American journal of Chinese medicine, 2016, Volume: 44, Issue:4

    This study aimed to investigate the effect of timosaponin B-II (TB-II) on palmitate (PA)-induced insulin resistance and inflammation in HepG2 cells, and probe the potential mechanisms. TB-II, a main ingredient of the traditional Chinese medicine Anemarrhena asphodeloides Bunge, notably ameliorated PA-induced insulin resistance and inflammation, and significantly improved cell viability, decreased PA-induced production of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]) and interleukin-6 (IL-6) levels. Further, TB-II treatment notably decreased malondialdehyde (MDA) and lactate dehydrogenase (LDH) levels, and improved superoxide dismutase (SOD) and nitric oxide (NO). TB-II also reduced HepG2 cells apoptosis. Insulin receptor substrate-1 (IRS1)/phosphatidylinositol 3-kinase (PI3K)/Akt and inhibitor of nuclear factor [Formula: see text]-B kinase (IKK)/NF-[Formula: see text]B pathways-related proteins, and IKK[Formula: see text], p65 phosphorylation, serine phosphorylation of insulin receptor substrate-1 (IRS-1) at S307, tyrosine phosphorylation of IRS-1, and Akt activation were determined by Western blot. Compared to model group, TB-II significantly downregulated the expression of p-NF-[Formula: see text]Bp65, p-IKK[Formula: see text], p-IRS-1, p-PI3K and p-Akt. TB-II is a promising potential agent for the management of palmitate-induced insulin resistance and inflammation, which might be via IR/IRS-1/PI3K/Akt and IKK/NF-[Formula: see text]B pathways.

    Topics: Hep G2 Cells; Humans; I-kappa B Kinase; Inflammation; Insulin Receptor Substrate Proteins; Insulin Resistance; Interleukin-6; NF-kappa B; Nitric Oxide; Palmitates; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Saponins; Signal Transduction; Steroids

2016