tiglyl-coenzyme-a and Metabolism--Inborn-Errors

tiglyl-coenzyme-a has been researched along with Metabolism--Inborn-Errors* in 2 studies

Other Studies

2 other study(ies) available for tiglyl-coenzyme-a and Metabolism--Inborn-Errors

ArticleYear
Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion.
    Journal of medical genetics, 2015, Volume: 52, Issue:10

    Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been determined. The objective of this report is to characterise ECHS1 and a mild form of its deficiency biochemically, and to determine the candidate metabolic product that can be efficiently used for neonatal diagnosis.. We conducted a detailed clinical, molecular genetics, biochemical and metabolic analysis of sibling patients with ECHS1 deficiency. Moreover, we purified human ECHS1, and determined the substrate specificity of ECHS1 for five substrates via different metabolic pathways.. Human ECHS1 catalyses the hydration of five substrates via different metabolic pathways, with the highest specificity for crotonyl-CoA and the lowest specificity for tiglyl-CoA. The patients had relatively high (∼7%) residual ECHS1 enzyme activity for crotonyl-CoA and methacrylyl-CoA caused by the compound heterozygous mutations (c.176A>G, (p.N59S) and c.413C>T, (p.A138V)) with normal mitochondrial complex I-IV activities. Affected patients excrete large amounts of N-acetyl-S-(2-carboxypropyl)cysteine, a metabolite of methacrylyl-CoA.. Laboratory data and clinical features demonstrated that the patients have a mild form of ECHS1 deficiency harbouring defective valine catabolic and β-oxidation pathways. N-Acetyl-S-(2-carboxypropyl) cysteine level was markedly high in the urine of the patients, and therefore, N-acetyl-S-(2-carboxypropyl)cysteine was regarded as a candidate metabolite for the diagnosis of ECHS1 deficiency. This metabolite is not part of current routine metabolic screening protocols, and its inclusion, therefore, holds immense potential in accurate diagnosis.

    Topics: Acetylcysteine; Acyl Coenzyme A; Child; Child, Preschool; Enoyl-CoA Hydratase; Female; Humans; Japan; Male; Metabolic Networks and Pathways; Metabolism, Inborn Errors; Mutation; Valine

2015
Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency: T2-deficient patients with "mild" mutation(s) were previously misinterpreted as normal by the coupled assay with tiglyl-CoA.
    Pediatric research, 2004, Volume: 56, Issue:1

    Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency is an inborn error of metabolism that affects the catabolism of isoleucine and ketone bodies. This disorder is characterized by intermittent ketoacidotic episodes. Recently, we diagnosed T2 deficiency in two patients (GK45 and GK47) by the absence of potassium ion-activated acetoacetyl-CoA thiolase activity, whereas these patients were previously misinterpreted as normal by a coupled assay with tiglyl-CoA as a substrate. This method has been widely used for the enzymatic diagnosis of the T2 deficiency in the United States and Europe. We hypothesized that some residual T2 activity showed normal results in the assay. To prove this hypothesis, we analyzed these two patients together with three typical T2-deficient patients (GK46, GK49, and GK50) at the DNA level. Expression analysis of mutant cDNAs clearly showed that GK45 and GK47 had "mild" mutations (A132G, D339-V340insD) that retained some residual T2 activity, at least one of two mutant alleles, whereas the other three patients had null mutations (c.52-53insC, G152A, H397D, and IVS8+1g>t) in either allele. These results raise the possibility that T2-deficient patients with mild mutations have been misinterpreted as normal by the coupled assay with tiglyl-CoA.

    Topics: Acetyl-CoA C-Acyltransferase; Acyl Coenzyme A; Cell Line, Transformed; Child, Preschool; DNA, Complementary; Enzyme Activation; Fibroblasts; Humans; Immunoblotting; Infant; Infant, Newborn; Male; Metabolism, Inborn Errors; Mitochondria; Point Mutation; Severity of Illness Index

2004