thyronines has been researched along with Pain* in 3 studies
3 other study(ies) available for thyronines and Pain
Article | Year |
---|---|
The impact of scopolamine pretreatment on 3-iodothyronamine (T1AM) effects on memory and pain in mice.
We previously demonstrated that 3-iodothyronamine (T1AM), a by-product of thyroid hormone metabolism, pharmacologically administered to mice acutely stimulated learning and memory acquisition and provided hyperalgesia with a mechanism which remains to be defined. We now aimed to investigate whether the T1AM effect on memory and pain was maintained in mice pre-treated with scopolamine, a non-selective muscarinic antagonist expected to induce amnesia and, possibly, hyperalgesia. Mice were pre-treated with scopolamine and, after 20min, injected intracerebroventricularly (i.c.v.) with T1AM (0.13, 0.4, 1.32μg/kg). 15min after T1AM injection, the mice learning capacity or their pain threshold were evaluated by the light/dark box and by the hot plate test (51.5°C) respectively. Experiments in the light/dark box were repeated in mice receiving clorgyline (2.5mg/kg, i.p.), a monoamine oxidase (MAO) inhibitor administered 10min before scopolamine (0.3mg/kg). Our results demonstrated that 0.3mg/kg scopolamine induced amnesia without modifying the murine pain threshold. T1AM fully reversed scopolamine-induced amnesia and produced hyperalgesia at a dose as low as 0.13μg/kg. The T1AM anti-amnestic effect was lost in mice pre-treated with clorgyline. We report that the removal of muscarinic signalling increases T1AM pro learning and hyperalgesic effectiveness suggesting T1AM as a potential treatment as a "pro-drug" for memory dysfunction in neurodegenerative diseases. Topics: Amnesia; Animals; Hyperalgesia; Learning; Male; Memory; Mice; Monoamine Oxidase Inhibitors; Pain; Pain Threshold; Prodrugs; Scopolamine; Thyronines; Time Factors | 2017 |
3-iodothyroacetic acid, a metabolite of thyroid hormone, induces itch and reduces threshold to noxious and to painful heat stimuli in mice.
Itch is associated with increased sensitization to nociceptive stimuli. We investigated whether 3-iodothyroacetic acid (TA1), by releasing histamine, induces itch and increases sensitization to noxious and painful heat stimuli.. Itch was evaluated after s.c. administration of TA1 (0.4, 1.32 and 4 μg·kg(-1) ). Mice threshold to noxious (NHT) and to painful heat stimuli were evaluated by the increasing-temperature hot plate (from 45.5 to 49.5°C) or by the hot plate (51.5°C) test, respectively, 15 min after i.p. injection of TA1 (0.4, 1.32 and 4 μg·kg(-1) ). Itch, NHT and pain threshold evaluation were repeated in mice pretreated with pyrilamine. Itch and NHT were also measured in HDC(+/+) and HDC(-/-) following injection of saline or TA1 (1.32, 4 and 11 μg·kg(-1) ; s.c. and i.p.). pERK1/2 levels were determined by Western blot in dorsal root ganglia (DRG) isolated from CD1 mice 15 min after they received (i.p.): saline, saline and noxious heat stimulus (46.5°C), TA1 (0.1, 0.4, 1.32, 4 μg·kg(-1) ) or TA1 1.32 μg·kg(-1) and noxious heat stimulus.. TA1 0.4 and 1.32 μg·kg(-1) induced itch and reduced NHT; pyrilamine pretreatment prevented both of these effects. TA1 4 μg·kg(-1) (i.p.) reduced pain threshold without inducing itch or modifying NHT. In HDC(-/-) mice, TA1 failed to induce itch and to reduce NHT. In DRG, pERK1/2 levels were significantly increased by noxious heat stimuli and by TA1 0.1, 0.4 and 1.32 μg·kg(-1) ; i.p.. Increased TA1 levels induce itch and an enhanced sensitivity to noxious heat stimuli suggesting that TA1 might represent a potential cause of itch in thyroid diseases. Topics: Animals; Ganglia, Spinal; Histamine H1 Antagonists; Histidine Decarboxylase; Hot Temperature; Male; MAP Kinase Signaling System; Mice; Mice, Knockout; Pain; Pain Threshold; Pruritus; Pyrilamine; Rats, Wistar; Thyroid Hormones; Thyronines; TRPV Cation Channels | 2015 |
Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold.
3-Iodothyronamine (T1AM), an endogenous derivative of thyroid hormones, is regarded as a rapid modulator of behaviour and metabolism. To determine whether brain thyroid hormone levels contribute to these effects, we investigated the effect of central administration of T1AM on learning and pain threshold of mice either untreated or pretreated with clorgyline (2.5 mg·kg(-1) , i.p.), an inhibitor of amine oxidative metabolism.. T1AM (0.13, 0.4, 1.32 and 4 μg·kg(-1) ) or vehicle was injected i.c.v. into male mice, and after 30 min their effects on memory acquisition capacity, pain threshold and curiosity were evaluated by the following tests: passive avoidance, licking latency on the hot plate and movements on the hole-board platform. Plasma glycaemia was measured using a glucorefractometer. Brain levels of triiodothyroxine (T3), thyroxine (T4) and T1AM were measured by HPLC coupled to tandem MS. ERK1/2 activation and c-fos expression in different brain regions were evaluated by Western blot analysis.. T1AM improved learning capacity, decreased pain threshold to hot stimuli, enhanced curiosity and raised plasma glycaemia in a dose-dependent way, without modifying T3 and T4 brain concentrations. T1AM effects on learning and pain were abolished or significantly affected by clorgyline, suggesting a role for some metabolite(s), or that T1AM interacts at the rapid desensitizing target(s). T1AM activated ERK in different brain areas at lower doses than those effective on behaviour.. T1AM is a novel memory enhancer. This feature might have important implications for the treatment of endocrine and neurodegenerative-induced memory disorders. Topics: Animals; Avoidance Learning; Behavior, Animal; Brain; Hot Temperature; Male; MAP Kinase Signaling System; Memory; Mice; Pain; Pain Threshold; Thyroid Hormones; Thyronines | 2013 |