thymosin-beta(4) and Cicatrix

thymosin-beta(4) has been researched along with Cicatrix* in 2 studies

Other Studies

2 other study(ies) available for thymosin-beta(4) and Cicatrix

ArticleYear
Thymosin β4 and the anti-fibrotic switch
    International immunopharmacology, 2023, Volume: 115

    Wound healing involves a rapid response to the injury by circulating cells, followed by inflammation with an influx of inflammatory cells that release various factors. Soon after, cellular proliferation begins to replace the damaged cells and extracellular matrix, and then tissue remodeling restores normal tissue function. Various factors can lead to pathological wound healing when excessive and irreversible connective tissue/extracellular matrix deposition occurs, resulting in fibrosis. The process is initiated when immune cells, such as macrophages, release soluble factors that stimulate fibroblasts. TGFβ is the most well-characterized macrophage derived pro-fibrotic mediator. Other soluble mediators of fibrosis include connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and interleukin 10 (IL-10). Thymosin β4 (Tβ4) has shown therapeutic benefit in preventing fibrosis/scarring in various animal models of fibrosis/scarring. The mechanism of action of Tβ4 appears related, in part, to a reduction in the inflammatory response, including a reduction in macrophage infiltration, decreased levels of TGFβ and IL-10, and reduced CTGF activation, resulting in both prevention of fibroblast conversion to myofibroblasts and production of normally aligned collagen fibers. The amino N-terminal end of Tβ4, SDKP (serine-aspartate-lysine-proline), appears to contain the majority of anti-fibrotic activity and has shown excellent efficacy in many animal models of fibrosis, including liver, lung, heart, and kidney fibrosis. Ac-SDKP not only prevents fibrosis but can reverse fibrosis. Unanswered questions and future directions will be presented with regard to therapeutic uses alone and in combination with already approved drugs for fibrosis.

    Topics: Animals; Cicatrix; Fibrosis; Interleukin-10; Thymosin; Transforming Growth Factor beta

2023
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
    Nature, 2012, May-31, Volume: 485, Issue:7400

    The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts,which represent 50%of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes.

    Topics: Animals; Biomarkers; Cell Lineage; Cell Transdifferentiation; Cellular Reprogramming; Cicatrix; Female; Fibroblasts; GATA4 Transcription Factor; Gene Expression Regulation; Genetic Vectors; Heart; Male; MEF2 Transcription Factors; Mice; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Myogenic Regulatory Factors; Regenerative Medicine; T-Box Domain Proteins; Thymosin

2012