thymosin has been researched along with Retinal-Diseases* in 4 studies
1 review(s) available for thymosin and Retinal-Diseases
Article | Year |
---|---|
Prothymosin alpha and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage.
Following stroke or traumatic damage, neuronal death via both necrosis and apoptosis causes loss of functions including memory, sensory perception and motor skills. Since necrosis has the nature to expand, while apoptosis stops the cell death cascade in the brain, necrosis is considered to be a promising target for rapid treatment for stroke. Pure neuronal necrosis occurs when cortical neurons are cultured under serum-free and low-density conditions. Prothymosin alpha (ProTalpha) isolated from conditioned medium after serum-free culture was found to prevent necrosis by recovering the energy crisis due to endocytosed glucose transporters. At a later time point under the same starvation conditions, ProTalpha causes apoptosis, which in turn seems to inhibit the rapidly occurring necrosis by cleaving poly (ADP-ribose) polymerase, a major machinery involved in ATP consumption. Indeed, ProTalpha administered via systemic routes markedly inhibits the histological and functional damage induced by cerebral and retinal ischemia. Although ProTalpha also causes a cell death mode switch from necrosis to apoptosis in vivo, the induced apoptosis was found to be completely inhibited by endogenously occurring brain-derived neurotrophic factor or erythropoietin. Since forced downregulation of ProTalpha deteriorates the ischemic damage, it is evident that ProTalpha plays in vivo neuroprotective roles after ischemic events. Analyses in terms of the therapeutic time window and potency suggest that ProTalpha could be the prototypic compound to develop the medicine useful for treatment of stroke in clinics. Topics: Animals; Apoptosis; Brain Ischemia; Cell Death; Drug Delivery Systems; Glucose Transport Proteins, Facilitative; Humans; Ischemia; Necrosis; Neurons; Protein Precursors; Retinal Diseases; Thymosin | 2009 |
3 other study(ies) available for thymosin and Retinal-Diseases
Article | Year |
---|---|
Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia-reperfusion.
Prothymosin alpha (ProTα) has robustness roles against brain and retinal ischemia or serum-starvation stress. In the ProTα sequence, the active core 30-amino acid peptide/P30 (a.a.49-78) is necessary for the original neuroprotective actions against ischemia. Moreover, the 9-amino acid peptide sequence/P9 (a.a.52-60) in P30 still shows neuroprotective activity against brain and retinal ischemia, though P9 is less potent than P30. As the previous structure-activity relationship study for ProTα may not be enough, the possibility still exists that any sequence smaller than P9 retains potent neuroprotective activity. When different P9- and P30-related peptides were intravitreally injected 24h after retinal ischemia in mice, the 6-amino acid peptide/P6 (NEVDEE, a.a.51-56) showed potent protective effects against ischemia-induced retinal functional deficits, which are equipotent to the level of P30 peptide in electroretinography (ERG) and histological damage in Hematoxylin and Eosin (HE) staining. Further studies using ERG and HE staining suggested that intravitreal or intravenous (i.v.) injection with modified P6 peptide/P6Q (NEVDQE) potently inhibited retinal ischemia-induced functional and histological damage. In an immunohistochemical analysis, the ischemia-induced loss of retinal ganglion, bipolar, amacrine and photoreceptor cells were inhibited by a systemic administration with P6Q peptide 24h after the ischemic stress. In addition, systemic post-treatment with P6Q peptide significantly inhibited retinal ischemia-induced microglia and astrocyte activation in terms of increased ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) intensity, respectively, as well as their morphological changes, increased number and migration. Thus, this study demonstrates the therapeutic significance of modified P6 peptide P6Q (NEVDQE) derived from 6-amino acid peptide (P6) in ProTα against ischemic damage. Topics: Animals; Electroretinography; Ischemia; Male; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; Protein Precursors; Reperfusion Injury; Retinal Diseases; Thymosin | 2016 |
Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina.
Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: ProTα preconditioning-induced prevention of retinal ischemic damage is mediated by selective activation of the TIR-domain-containing adapter-inducing interferon-β (TRIF)- interferon regulatory factor 3 (IRF3) pathway downstream of toll-like receptor 4 (TLR4) in microglia, resulting in up-regulation of TRIF-IRF3-dependent protective genes and down-regulation of myeloid differentiation primary response gene 88 (MyD88)-Nuclear factor (NF)κB-dependent injury genes. Detailed investigations would be helpful to test the Topics: Adaptor Proteins, Vesicular Transport; Animals; Ischemia; Lipopolysaccharides; Male; Mice, Inbred C57BL; Mice, Knockout; Microglia; Protein Precursors; Retinal Diseases; Signal Transduction; Thymosin; Toll-Like Receptor 4; Up-Regulation | 2015 |
Novel neuroprotective action of prothymosin α-derived peptide against retinal and brain ischemic damages.
Prothymosin alpha (ProTα), a nuclear protein, is implicated in the inhibition of ischemia-induced necrosis as well as apoptosis in the brain and retina. Although ProTα has multiple biological functions through distinct regions in its sequence, it has remained which region is involved in this neuroprotection. This study reported that the active core peptide sequence P30 (amino acids 49-78) of ProTα exerts its full survival effect in cultured cortical neurons against ischemic stress. Our in vivo study revealed that intravitreous administration of P30 at 24 h after retinal ischemia significantly blocks the ischemia-induced functional damages of retina at day 7. In addition, P30 completely rescued the retinal ischemia-induced ganglion cell damages at day 7 after the ischemic stress, along with partial blockade of the loss of bipolar, amacrine, and photoreceptor cells. On the other hand, intracerebroventricular (3 nmol) or systemic (1 mg/kg; i.v.) injection of P30 at 1 h after cerebral ischemia (1 h tMCAO) significantly blocked the ischemia-induced brain damages and disruption of blood vessels. Systemic P30 delivery (1 mg/kg; i.v.) also significantly ameliorated the ischemic brain caused by photochemically induced thrombosis. Taken together, this study confers a precise demonstration about the novel protective activity of ProTα-derived small peptide P30 against the ischemic damages in vitro and in vivo. Topics: Amino Acid Sequence; Animals; Brain Ischemia; Cell Survival; Cells, Cultured; Cerebral Cortex; Male; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Neuroprotective Agents; Protein Precursors; Rats; Retinal Diseases; Thymosin | 2013 |