thymocartin has been researched along with Helicobacter-Infections* in 1 studies
1 other study(ies) available for thymocartin and Helicobacter-Infections
Article | Year |
---|---|
Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model.
Helicobacter pylori infection is marked by a strong association with various gastric diseases, including gastritis, ulcers, and gastric cancer. Antibiotic treatment regimens have low success rates due to the rapid occurrence of resistant H. pylori strains, necessitating the development of novel anti-H. pylori strategies. Here, we investigated the therapeutic potential of a novel peptide, Tilapia Piscidin 4 (TP4), against multidrug resistant gastric pathogen H. pylori, based on its in vitro and in vivo efficacy.TP4 inhibited the growth of both antibiotic-sensitive and -resistant H. pylori (CagA+, VacA+) via membrane micelle formation, which led to membrane depolarization and extravasation of cellular constituents. During colonization of gastric tissue, H. pylori infection maintains high T regulatory subsets and a low Th17/Treg ratio, and results in expression of both pro- and anti-inflammatory cytokines. Treatment with TP4 suppressed Treg subset populations and pro- and anti- inflammatory cytokines. TP4 restored the Th17/Treg balance, which resulted in early clearance of H. pylori density and recovery of gastric morphology. Toxicity studies demonstrated that TP4 treatment has no adverse effects in mice or rabbits. The results of this study indicate that TP4 may be an effective and safe monotherapeutic agent for the treatment of multidrug resistant H. pylori infections. Topics: Animals; Anti-Infective Agents; Disease Models, Animal; Helicobacter Infections; Helicobacter pylori; Male; Mice; Mice, Inbred C3H; Microbial Sensitivity Tests; Peptide Fragments; Rabbits; Random Allocation; Thymopoietins | 2015 |