thromboxane-b2 has been researched along with Polyuria* in 6 studies
2 trial(s) available for thromboxane-b2 and Polyuria
Article | Year |
---|---|
Interactions between the renin-angiotensin system and prostanoids in modulating renal function in potassium-depleted healthy women.
Plasma renin activity (PRA) and urinary aldosterone excretion were determined in healthy women with normal potassium balance (N, n = 20) or experimental potassium depletion (KD). KD was induced by natriuretic treatment--associated with replacement of net NaCl and water losses--and low dietary potassium intake (< or = 10 mmol/d). By using different depletion patterns, three groups were obtained with cumulative potassium deficits (mean +/- SEM) of 160 +/- 43 (KD1, n = 8), 198 +/- 22 (KD2, n = 6) and 215 +/- 54 mmol (KD3, n = 6). The renal function by the clearance (cl.) method and urinary concentrations of prostaglandin E2 (PGE2), 6-keto-PGF1 alpha (6KPGF), and thromboxane B2 (TXB2) by the RIA method were estimated during hypotonic polyuria (oral water load) and subsequent moderate antidiuresis induced by low-dose infusion of lysine-8-vasopressin (LVP). 1. In all KD groups the depletion treatment significantly reduced both potassium plasma concentration (PK) and urinary potassium excretion while it increased basal PRA; the basal urinary aldosterone excretion was not significantly different from normokalemic controls. In the KD3 vs KD1 group the P kappa value was significantly lower. 2. In both KD2 and KD3 groups as compared to the N group, several hypokalemic-like renal dysfunctions--absent in the KD1 group--occurred. Particularly, in the KD2 + KD3 vs N group the renal ability in both urine diluting (water load) and concentrating (LVP infusion) was significantly impaired.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Ketoprostaglandin F1 alpha; Adult; Aldosterone; Blood Pressure; Dinoprostone; Diuresis; Female; Glomerular Filtration Rate; Humans; Hypokalemia; Kidney; Middle Aged; Natriuresis; Polyuria; Potassium; Potassium, Dietary; Prostaglandins; Renin; Renin-Angiotensin System; Thromboxane B2 | 1994 |
Urinary prostanoid excretion in healthy women with different degrees of induced potassium depletion.
Plasma renin activity (PRA), urinary excretions of PGE2, 6-keto-PGF1 alpha (6KPGF), TXB2 and renal function were determined in healthy women both in normal potassium balance (N, n = 14) and in experimental potassium depletion (KD). KD was induced by natriuretic treatment--associated to replacement of net NaCl and water losses--in the presence of either normal (congruent to 50 mmol/d) or low (less than or equal to 10 mmol/d) dietary potassium intake. By using different depletive patterns, three groups with estimated cumulative potassium deficit (mean +/- SEM) of 124 +/- 38 (KD0, n = 8), 160 +/- 43 (KD1, n = 8) and 198 +/- 22 mmol (KD2, n = 6), respectively, were obtained. Renal function by the clearance (cl.) method and urinary prostanoid concentrations by the RIA method were estimated during hypotonic polyuria (oral water load) and subsequent moderate antidiuresis induced by a low-dose infusion of lysine-8-vasopressin. 1. In KD0 group the potassium depletive treatment was inefficacious in significantly reducing either the plasma potassium concentration (PK) or the urinary potassium excretion (UKV). The reductions of PK and UKV as well as the enhancement of PRA became significant in KD1 and KD2 groups. 2. The urinary prostanoid excretions were not significantly changed in the KD0 and KD1 groups while in the KD2 group they were reduced, mainly concerning the urinary 6KPGF excretion. 3. Furthermore in the KD2 group, with larger potassium depletion, some of the typical hypokalemic renal dysfunctions appeared. The data suggest that a pathophysiologically critical degree of potassium depletion is associated with an inhibited renal prostanoid synthesis as well as an increased renin secretion. Topics: 6-Ketoprostaglandin F1 alpha; Adult; Chlorides; Dinoprostone; Female; Glomerular Filtration Rate; Humans; Indomethacin; Kidney Function Tests; Natriuresis; Polyuria; Potassium; Potassium Deficiency; Renin; Thromboxane B2; Water Intoxication | 1992 |
4 other study(ies) available for thromboxane-b2 and Polyuria
Article | Year |
---|---|
Renal synthesis of prostacyclin and thromboxane in healthy women: differential effects of a short-term saline loading.
It is accepted that the urinary excretions of the stable metabolites of prostaglandin (PG)I2 and thromboxane(Tx) A2, 6-keto-PGF1alpha (6KPGF) and TxB2 respectively, provide an accurate estimate of both basal and stimulated renal synthesis of their precursors. The excretory profile of these metabolites has been evaluated in healthy women submitted to a short-term expansion in extracellular fluid volume. Salt retention (SR group, n=6) was induced by physiological saline (0.9% NaCl) i.v. infusions (2 L per day) over a period of 2 days. On the third day the increase in body weight was 0.92 +/- 0.27 kg (P<0.05). The results of the study have been compared to those previously obtained in normal balance of sodium and potassium (N group, n=20) and in induced salt depletion (SD group, n=14). A common study protocol was used. Basal values of plasma renin activity (PRA) and urinary aldosterone excretion were determined. Renal functional exploration [clearance (cl.) method] was performed during hypotonic polyuria (induced by oral water load) and subsequent moderate antidiuresis (induced by low-dose infusion of an antidiuretic hormone analogue). Urinary 6KPGF and TxB2 concentrations were estimated by RIA method and their urinary excretions were determined at both high and low urinary flow rates. The linear regressions of the urinary metabolite excretions vs. urinary flow rate were estimated by using the data obtained in both hypotonic polyuria and antidiuresis. Salt retention (SR vs. N group) was effective in decreasing the basal values of plasma renin activity and urinary aldosterone excretion. Moreover, during hypotonic polyuria it was effective in increasing the absolute and fractional excretions of sodium and chloride, in the absence of significant variations in mean arterial pressure and creatinine cl. Regarding urinary prostanoid excretions the following results were obtained. 1. Comparative data for hypotonic polyuria. In the SR vs. N group, the urinary excretion of 6KPGF was significantly higher, whereas that of TxB2 was not significantly different. In the SR vs. SD group, the urinary excretion of 6KPGF was not significantly different, whereas that of TxB2 was significantly lower. 2. Comparative data for the regression lines of the urinary prostanoid excretions vs. diuresis. In the SR vs. N group, the regression line slope for 6KPGF excretion was significantly higher, whereas that for TxB2 excretion was not significantly different. In the SR vs. SD group, the Topics: 6-Ketoprostaglandin F1 alpha; Adult; Aldosterone; Chlorides; Diuresis; Epoprostenol; Female; Humans; Kidney; Middle Aged; Polyuria; Potassium; Renin; Sodium; Sodium Chloride; Thromboxane B2 | 2000 |
[Renal function in experimental potassium depletion. I. Effects of lysine-8-vasopressin in hypotonic polyuria].
Renal function has been studied by the clearance (cl.) method during hypotonic polyuria--four 15-min cl. periods--and successive antidiuresis--two 60-min cl. periods (A1, A2)--induced by lysine-8-vasopressin (LVP), 5 mU in bolus followed by infusion at a rate of 0.04 mU/min. The endogenous creatinine cl. (Cc) and the osmotic cls. (Cosm, CH2O) were determined by the usual methods as well as the absolute and fractional urinary excretions of water, sodium, chloride and potassium. The urinary concentrations of PGE2, 6-keto-PGF1 alpha and TxB2 were determined by the RIA method. This study protocol has been applied to 28 healthy women either in normal potassium balance (N, n = 14) or after potassium depletion (KD) induced by low potassium dietary intake (less than or equal to 10 meq/d) plus natriuretic treatment according to two different time patterns: two KD groups were obtained with potassium cumulative deficit of 160 +/- 43 (D2, n = 8) and 198 +/- 22 meq (D3, n = 6). The early % effects of LVP, i.e. (A1-P)% of P (mean polyuria), were significantly different only in D3 as compared to N. Precisely, the LVP-effect to reduce Cc was blunted; moreover a LVP-effect to reduce renal sodium and chloride fractional excretions and a tendentiously enhanced LVP-effect to reduce water fractional excretion were observed. These tubular effects are likely related to the inhibited renal synthesis of prostanoids in the D3 group. Topics: 6-Ketoprostaglandin F1 alpha; Dinoprostone; Female; Humans; Kidney; Lypressin; Polyuria; Potassium Deficiency; Thromboxane B2 | 1989 |
[Renal function in experimental potassium depletion. II. Indomethacin and effects of lysine-8-vasopressin in hypotonic polyuria].
Renal function has been studied by the clearance (cl.) method during hypotonic polyuria--four 15-min cl. periods--and successive antidiuresis--two 60-min cl. periods (A1, A2)--induced by lysine-8-vasopressin (LVP), 5 mU in bolus followed by infusion at a rate of 0.04 mU/min. The endogenous creatinine cl. (Cc) and the osmotic cls. (Cosm, CH2O) were determined by the usual methods as well as the absolute and fractional urinary excretions of water, sodium, chloride and potassium. The urinary concentrations of PGE2, 6-keto-PGF1 alpha and TxB2 were determined by the RIA method. This study protocol has been applied to 20 healthy women submitted to paired functional explorations in both the absence and presence of indomethacin (100 mg i.m.); the drug effects have been evaluated in both normal potassium balance (N2, n = 6) and in two groups of potassium depletion (KD) with potassium cumulative deficit of 160 +/- 43 (D2, n = 8) and 198 +/- 22 meq (D3, n = 6), respectively. As regards the early % effects of LVP, i.e. (A1-P)% of P (mean polyuria), the inhibition of prostanoid synthesis with indomethacin produced significant changes: 1) an enhanced reduction in renal chloride excretion in all experimental groups; 2) a reduction in renal sodium and chloride fractional excretions in both KD groups; 3) an enhanced antidiuretic effect in D3 only, i.e. in the experimental condition with inhibition of prostanoid renal synthesis present during the control study. Topics: 6-Ketoprostaglandin F1 alpha; Dinoprostone; Female; Humans; Indomethacin; Kidney; Lypressin; Polyuria; Potassium Deficiency; Thromboxane B2 | 1989 |
[Urinary excretion of prostanoids in the course of changes in diuresis over short and long terms respectively].
Topics: Adult; Diuresis; Female; Humans; Middle Aged; Polyuria; Prostaglandin Endoperoxides; Prostaglandins F; Prostaglandins G; Thromboxane B2; Time Factors; Water-Electrolyte Balance | 1987 |