thromboxane-a2 and Lung-Diseases--Obstructive

thromboxane-a2 has been researched along with Lung-Diseases--Obstructive* in 4 studies

Other Studies

4 other study(ies) available for thromboxane-a2 and Lung-Diseases--Obstructive

ArticleYear
Mechanisms underlying early development of pulmonary vascular obstructive disease in Down syndrome: An imbalance in biosynthesis of thromboxane A2 and prostacyclin.
    American journal of medical genetics. Part A, 2010, Volume: 152A, Issue:8

    Patients with Down syndrome (DS) and a left-to-right shunt often develop early severe pulmonary hypertension (PH) and pulmonary vascular obstructive disease (PVOD); the pathophysiological mechanisms underlying the development of these complications are yet to be determined. To investigate the mechanisms, we evaluated the biosynthesis of thromboxane (TX) A(2) and prostacyclin (PGI(2)) in four groups of infants, cross-classified as shown below, by measuring the urinary excretion levels of 11-dehydro-TXB(2) and 2,3-dinor-6-keto-PGF(1alpha): DS infants with a left-to-right shunt and PH (D-PH, n = 18), DS infants without congenital heart defect (D-C, n = 8), non-DS infants with a left-to-right shunt and PH (ND-PH, n = 12), and non-DS infants without congenital heart defect (ND-C, n = 22). The urinary excretion ratios of 11-dehydro-TXB(2) to 2,3-dinor-6-keto-PGF(1alpha) in the D-PH, D-C, ND-PH, and ND-C groups were 7.69, 4.71, 2.10, and 2.27, respectively. The ratio of 11-dehydro-TXB(2) to 2,3-dinor-6-keto-PGF(1alpha) was higher in the presence of DS (P < 0.001), independently of the presence of PH (P = 0.297). The predominant biosynthesis of TXA(2) over PGI(2), leading to vasoconstriction, was observed in DS infants, irrespective of the presence/absence of PH. This imbalance in the biosynthesis of vasoactive eicosanoids may account for the rapid progression of PVOD in DS infants with a left-to-right shunt.

    Topics: 6-Ketoprostaglandin F1 alpha; Child, Preschool; Cross-Sectional Studies; Down Syndrome; Epoprostenol; Female; Heart Defects, Congenital; Humans; Hypertension, Pulmonary; Infant; Lung Diseases, Obstructive; Male; Prognosis; Pulmonary Heart Disease; Radioimmunoassay; Thromboxane A2; Thromboxane B2

2010
[Short-term effect and the mechanism of radix Angelicae on pulmonary hypertension in chronic obstructive pulmonary disease].
    Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 1992, Volume: 15, Issue:2

    The changes of hemodynamics, hemorheology and blood gas were investigated in 28 stable COPD patients with pulmonary hypertension after short-term treatment by Radix Angelicae. The level of TXA2, PGI2 were measured in 10 of the 28 patients before and after treatment. The results show that Radix Angelicae produced significant improvement on pulmonary hypertension, blood viscosity, hematocrit and the level of TXA2 decreased significantly. But the blood gas, blood pressure and the level of PGI2 remained unchanged in all of the patients.

    Topics: Blood Pressure; Blood Viscosity; Drugs, Chinese Herbal; Humans; Hypertension, Pulmonary; Lung Diseases, Obstructive; Pulmonary Artery; Thromboxane A2

1992
An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension.
    The New England journal of medicine, 1992, Jul-09, Volume: 327, Issue:2

    Constriction of small pulmonary arteries and arterioles and focal vascular injury are features of pulmonary hypertension. Because thromboxane A2 is both a vasoconstrictor and a potent stimulus for platelet aggregation, it may be an important mediator of pulmonary hypertension. Its effects are antagonized by prostacyclin, which is released by vascular endothelial cells. We tested the hypothesis that there may be an imbalance between the release of thromboxane A2 and prostacyclin in pulmonary hypertension, reflecting platelet activation and an abnormal response of the pulmonary vascular endothelium.. We used radioimmunoassays to measure the 24-hour urinary excretion of two stable metabolites of thromboxane A2 and a metabolite of prostacyclin in 20 patients with primary pulmonary hypertension, 14 with secondary pulmonary hypertension, 9 with severe chronic obstructive pulmonary disease (COPD) but no clinical evidence of pulmonary hypertension, and 23 normal controls.. The 24-hour excretion of 11-dehydro-thromboxane B2 (a stable metabolite of thromboxane A2) was increased in patients with primary pulmonary hypertension and patients with secondary pulmonary hypertension, as compared with normal controls (3224 +/- 482, 5392 +/- 1640, and 1145 +/- 221 pg per milligram of creatinine, respectively; P less than 0.05), whereas the 24-hour excretion of 2,3-dinor-6-keto-prostaglandin F1 alpha (a stable metabolite of prostacyclin) was decreased (369 +/- 106, 304 +/- 76, and 644 +/- 124 pg per milligram of creatinine, respectively; P less than 0.05). The rate of excretion of all metabolites in the patients with COPD but no clinical evidence of pulmonary hypertension was similar to that in the normal controls.. An increase in the release of the vasoconstrictor thromboxane A2, suggesting the activation of platelets, occurs in both the primary and secondary forms of pulmonary hypertension. By contrast, the release of prostacyclin is depressed in these patients. Whether the imbalance in the release of these mediators is a cause or a result of pulmonary hypertension is unknown, but it may play a part in the development and maintenance of both forms of the disorder.

    Topics: 6-Ketoprostaglandin F1 alpha; Adult; Epoprostenol; Female; Humans; Hypertension, Pulmonary; Lung Diseases, Obstructive; Male; Radioimmunoassay; Thromboxane A2; Thromboxane B2

1992
Effects of dipyridamole infusion on local platelet aggregation and local formation of thromboxane A2 in patients with pulmonary hypertension.
    Advances in prostaglandin, thromboxane, and leukotriene research, 1985, Volume: 13

    Topics: beta-Thromboglobulin; Dipyridamole; Female; Humans; Hypertension, Pulmonary; Lung Diseases, Obstructive; Male; Middle Aged; Platelet Aggregation; Thromboxane A2; Thromboxane B2; Thromboxanes

1985