thromboxane-a2 and Insulin-Resistance

thromboxane-a2 has been researched along with Insulin-Resistance* in 6 studies

Other Studies

6 other study(ies) available for thromboxane-a2 and Insulin-Resistance

ArticleYear
Endothelial Extracellular Signal-Regulated Kinase/Thromboxane A2/Prostanoid Receptor Pathway Aggravates Endothelial Dysfunction and Insulin Resistance in a Mouse Model of Metabolic Syndrome.
    Journal of the American Heart Association, 2022, 12-06, Volume: 11, Issue:23

    Background Metabolic syndrome is characterized by insulin resistance, which impairs intracellular signaling pathways and endothelial NO bioactivity, leading to cardiovascular complications. Extracellular signal-regulated kinase (ERK) is a major component of insulin signaling cascades that can be activated by many vasoactive peptides, hormones, and cytokines that are elevated in metabolic syndrome. The aim of this study was to clarify the role of endothelial ERK2 in vivo on NO bioactivity and insulin resistance in a mouse model of metabolic syndrome. Methods and Results Control and endothelial-specific ERK2 knockout mice were fed a high-fat/high-sucrose diet (HFHSD) for 24 weeks. Systolic blood pressure, endothelial function, and glucose metabolism were investigated. Systolic blood pressure was lowered with increased NO products and decreased thromboxane A2/prostanoid (TP) products in HFHSD-fed ERK2 knockout mice, and Nω-nitro-l-arginine methyl ester (L-NAME) increased it to the levels observed in HFHSD-fed controls. Acetylcholine-induced relaxation of aortic rings was increased, and aortic superoxide level was lowered in HFHSD-fed ERK2 knockout mice. S18886, an antagonist of the TP receptor, improved endothelial function and decreased superoxide level only in the rings from HFHSD-fed controls. Glucose intolerance and the impaired insulin sensitivity were blunted in HFHSD-fed ERK2 knockout mice without changes in body weight. In vivo, S18886 improved endothelial dysfunction, systolic blood pressure, fasting serum glucose and insulin levels, and suppressed nonalcoholic fatty liver disease scores only in HFHSD-fed controls. Conclusions Endothelial ERK2 increased superoxide level and decreased NO bioactivity, resulting in the deterioration of endothelial function, insulin resistance, and steatohepatitis, which were improved by a TP receptor antagonist, in a mouse model of metabolic syndrome.

    Topics: Animals; Extracellular Signal-Regulated MAP Kinases; Insulin; Insulin Resistance; Metabolic Syndrome; Mice; Mice, Knockout; Prostaglandins; Receptors, Thromboxane A2, Prostaglandin H2; Thromboxane A2

2022
Improvement of metabolic parameters and vascular function by metformin in obese non-diabetic rats.
    Life sciences, 2012, Jan-30, Volume: 90, Issue:5-6

    Metformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin.. 16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed.. 18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats.. Metformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization, correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide.

    Topics: Acetylcholine; Animals; Blood Pressure; Body Weight; Disease Models, Animal; Dyslipidemias; Epoprostenol; Hyperinsulinism; Hypoglycemic Agents; Indomethacin; Insulin; Insulin Resistance; Male; Mesenteric Arteries; Metformin; Nitric Oxide; Nitric Oxide Synthase; Nitroprusside; Norepinephrine; Obesity; Rats; Rats, Wistar; Reactive Oxygen Species; Sodium Glutamate; Thromboxane A2

2012
Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.
    Clinical science (London, England : 1979), 2012, Volume: 123, Issue:12

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia plays an important role in hyper-responsiveness to MTX in NASH-cirrhotic rat livers with portal hypertension. The leptin-enhanced MTX-stimulated increase in PPP is mediated by increased oxidative stress and Kupffer-cell-activated AA-derived TXA(2) release in NASH-cirrhotic rats.

    Topics: Analysis of Variance; Animals; Arachidonic Acid; Benzofurans; Choline; Clodronic Acid; Diet, High-Fat; DNA Primers; Fatty Acids, Unsaturated; Fatty Liver; Gadolinium; Hemodynamics; Hypertension, Portal; Insulin Resistance; Kupffer Cells; Leptin; Methionine; Methoxamine; Microcirculation; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Rats; Receptors, Thromboxane A2, Prostaglandin H2; RNA, Messenger; Sulfonylurea Compounds; Thiobarbituric Acid Reactive Substances; Thromboxane A2

2012
[Insulin resistance and effects of intravenous acute saline load on renal production of prostaglandin I2 and thromboxane A2 in salt-sensitive hypertensive patients].
    Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA, 2005, Volume: 25, Issue:1

    To investigate insulin resistance and the effects of intravenous acute saline load on renal production of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) in salt-sensitive hypertensive patients.. The 24-hour excretion of urinary 6-keto-prostaglandin F (PGF) 1alpha and thromboxane B(2) were measured before and after intravenous acute saline load in 53 hypertensive patients whose salt sensitivity had been determined. Oral glucose tolerance test and insulin release test were performed in all the subjects.. after intravenous acute saline load, the 24-hour excretions of urinary 6-keto PGF 1alpha were significantly lower in salt-sensitive (SS) hypertensive patients than that in non-salt-sensitive (NSS) ones (316+/-57 pg/min vs 371+/-68 pg/min, P<0.01), and the decrease from baseline was much greater in SS group than that in NSS group (197+/-99 pg/min vs 136+/-101 pg/min, P<0.01). Both 24 hour urinary excretion of TXA(2) and the increase in urinary excretion of TXA(2) were significantly greater in SS hypertensive patients than those in NSS ones after salt loading (394+/-32 pg/min vs 359+/-44 pg/min, P<0.01, and 80+/-47 pg/min vs 47+/-45 pg/min, P<0.01, respectively). The plasma glucose and insulin concentrations in every time point were much higher in SS hypertensive subjects than that in NSS ones, and the former group had lower insulin sensitivity index than the latter (0.013+/-0.003 vs 0.018+/-0.004, P<0.01). Saline load produces significantly different effects on renal production of PGI(2) and TXA(2) in SS and NSS hypertensive patients, and these changes may be related to the pathophysiology of SS hypertensive patients after acute salt loading. Insulin resistance is greater in SS hypertensive patients than in NSS ones.

    Topics: 6-Ketoprostaglandin F1 alpha; Adult; Epoprostenol; Female; Humans; Hypertension; Injections, Intravenous; Insulin Resistance; Kidney; Male; Middle Aged; Sodium Chloride; Thromboxane A2; Thromboxane B2

2005
Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women.
    Obstetrics and gynecology, 1995, Volume: 85, Issue:3

    To determine if hyperinsulinemia, hypertension, hypertriglyceridemia, and low levels of high-density lipoprotein (HDL) cholesterol are present in women with pregnancy-induced hypertension or preeclampsia.. Serum concentrations of insulin, uric acid, total and lipoprotein cholesterol, triglyceride, and apolipoproteins A-I and B were measured in 31 women with pregnancy-induced hypertension (eight with proteinuria) and in 21 healthy, pregnant, weight-matched controls at 30-39 weeks' gestation. The urinary excretion of the stable metabolites of prostacyclin (PGI2) (6-keto-prostaglandin [PG] F1 alpha and 2,3-dinor-6-keto-PGF1 alpha) and thromboxane A2 (TxA2) (thromboxane B2 and 2,3-dinor-thromboxane B2) was assessed in 17 women with pregnancy-induced hypertension and in eight controls.. Women with pregnancy-induced hypertension exhibited 18% lower mean serum HDL2 cholesterol levels (0.9 versus 1.1 mmol/L, P < .05) and 65% higher mean triglyceride levels (3.3 versus 2.0 mmol/L, P < .05) compared to controls, whereas other serum lipid and apolipoprotein values did not differ significantly in the two groups. Mean serum insulin levels (13.3 versus 6.5 mU/L, P < .01) and uric acid levels (339.7 versus 231.2 mumol/L, P < .01) in patients with pregnancy-induced hypertension were significantly higher than those in the controls. Urinary output of PGI2 metabolites was reduced by 35-45% in patients with pregnancy-induced hypertension, whereas no differences were seen in the excretion of TxA2 metabolites. Serum HDL2 cholesterol concentrations correlated positively with 2,3-dinor-6-keto-PGF1 alpha excretion, and serum triglyceride concentrations correlated positively with 2,3-dinor-thromboxane B2 excretion. In addition, insulin levels correlated positively with triglyceride levels but negatively with HDL2 cholesterol concentrations.. The metabolic characteristics (hypertriglyceridemia, hyperinsulinemia, hyperuricemia, low HDL2 cholesterol) in pregnancy-induced hypertension resemble the main features of the "insulin resistance syndrome." This may result in endothelial cell dysfunction as evidenced by PGI2 suppression.

    Topics: Apolipoprotein A-I; Apolipoprotein A-II; Case-Control Studies; Cholesterol; Epoprostenol; Female; Humans; Hypertension; Insulin; Insulin Resistance; Lipids; Pregnancy; Pregnancy Complications, Cardiovascular; Thromboxane A2; Triglycerides; Uric Acid

1995
Magnesium deficiency produces insulin resistance and increased thromboxane synthesis.
    Hypertension (Dallas, Tex. : 1979), 1993, Volume: 21, Issue:6 Pt 2

    Evidence suggests that magnesium deficiency may play an important role in cardiovascular disease. In this study, we evaluated the effects of a magnesium infusion and dietary-induced isolated magnesium deficiency on the production of thromboxane and on angiotensin II-mediated aldosterone synthesis in normal human subjects. Because insulin resistance may be associated with altered blood pressure, we also measured insulin sensitivity using an intravenous glucose tolerance test with minimal model analysis in six subjects. The magnesium infusion reduced urinary thromboxane concentration and angiotensin II-induced plasma aldosterone levels. The low magnesium diet reduced both serum magnesium and intracellular free magnesium in red blood cells as determined by nuclear magnetic resonance (186 +/- 10 [SEM] to 127 +/- 9 mM, p < 0.01). Urinary thromboxane concentration measured by radioimmunoassay increased after magnesium deficiency. Similarly, angiotensin II-induced plasma aldosterone concentration increased after magnesium deficiency. Analysis showed that all subjects studied had a decrease in insulin sensitivity after magnesium deficiency (3.69 +/- 0.6 to 2.75 +/- 0.5 min-1 per microunit per milliliter x 10(-4), p < 0.03). We conclude that dietary-induced magnesium deficiency 1) increases thromboxane urinary concentration and 2) enhances angiotensin-induced aldosterone synthesis. These effects are associated with a decrease in insulin action, suggesting that magnesium deficiency may be a common factor associated with insulin resistance and vascular disease.

    Topics: Aldosterone; Angiotensin II; Diet; Female; Glucose Tolerance Test; Humans; Injections, Intravenous; Insulin Resistance; Intracellular Membranes; Magnesium; Magnesium Deficiency; Male; Thromboxane A2

1993