thromboxane-a2 has been researched along with Chagas-Disease* in 4 studies
4 other study(ies) available for thromboxane-a2 and Chagas-Disease
Article | Year |
---|---|
Salivary Thromboxane A2-Binding Proteins from Triatomine Vectors of Chagas Disease Inhibit Platelet-Mediated Neutrophil Extracellular Traps (NETs) Formation and Arterial Thrombosis.
The saliva of blood-feeding arthropods contains a notable diversity of molecules that target the hemostatic and immune systems of the host. Dipetalodipin and triplatin are triatomine salivary proteins that exhibit high affinity binding to prostanoids, such as TXA2, thus resulting in potent inhibitory effect on platelet aggregation in vitro. It was recently demonstrated that platelet-derived TXA2 mediates the formation of neutrophil extracellular traps (NETs), a newly recognized link between inflammation and thrombosis that promote thrombus growth and stability.. This study evaluated the ability of dipetalodipin and triplatin to block NETs formation in vitro. We also investigated the in vivo antithrombotic activity of TXA2 binding proteins by employing two murine models of experimental thrombosis. Remarkably, we observed that both inhibitors abolished the platelet-mediated formation of NETs in vitro. Dipetalodipin and triplatin significantly increased carotid artery occlusion time in a FeCl3-induced injury model. Treatment with TXA2-binding proteins also protected mice from lethal pulmonary thromboembolism evoked by the intravenous injection of collagen and epinephrine. Effective antithrombotic doses of dipetalodipin and triplatin did not increase blood loss, which was estimated using the tail transection method.. Salivary TXA2-binding proteins, dipetalodipin and triplatin, are capable to prevent platelet-mediated NETs formation in vitro. This ability may contribute to the antithrombotic effects in vivo. Notably, both molecules inhibit arterial thrombosis without promoting excessive bleeding. Our results provide new insight into the antihemostatic effects of TXA2-binding proteins and may have important significance in elucidating the mechanisms of saliva to avoid host's hemostatic responses and innate immune system. Topics: Animals; Arthropod Proteins; Blood Platelets; Chagas Disease; Extracellular Traps; Female; Humans; Insect Vectors; Male; Mice; Mice, Inbred BALB C; Neutrophils; Platelet Aggregation; Platelet Aggregation Inhibitors; Protein Binding; Recombinant Proteins; Salivary Proteins and Peptides; Thrombosis; Thromboxane A2; Triatominae | 2015 |
Microarray analysis of the mammalian thromboxane receptor-Trypanosoma cruzi interaction.
Trypanosoma cruzi, the etiological agent of Chagas disease, causes vasculopathy and cardiomyopathy in humans and is associated with elevated levels of several vasoactive molecules such as nitric oxide, endothelin-1 and thromboxane A 2 (TXA 2). Parasite derived TXA 2 modulates vasculopathy and other pathophysiological features of Chagasic cardiomyopathy. Previously, we demonstrated that in response to infection with T. cruzi, TXA 2 receptor (TP) null mice displayed increased parasitemia; mortality and cardiac pathology compared with wild type (WT) and TXA 2 synthase null mice. In order to further study the role of TXA 2-TP signaling in the development of Chagas disease, GeneChip microarrays were used to detect transcriptome changes in rat fat pad endothelial cells (RFP-ECs) which is incapable of TXA 2 signaling (TP null) to that of control (wild type) and RFP-EC with reconstituted TP expression. Genes that were significantly regulated due to infection were identified using a time course of 2, 18 and 48 hrs post infection. We identified several key genes such as suppressor of cytokine signaling (SOCS-5), several cytokines (CSF-1, CXCF ligands), and MAP kinases (MAPK-1, Janus kinase) that were upregulated in the absence of TP signaling. These data underscore the importance of the interaction of the parasite with mammalian TP and may explain the increased mortality and cardiovascular pathology observed in infected TP null mice. Topics: Animals; Chagas Disease; Cytokines; Endothelial Cells; Gene Expression Profiling; Gene Expression Regulation; Host-Parasite Interactions; Immunoblotting; Mice; Microscopy, Fluorescence; Mitogen-Activated Protein Kinases; Oligonucleotide Array Sequence Analysis; Rats; Receptors, Thromboxane; Suppressor of Cytokine Signaling Proteins; Thromboxane A2; Time Factors; Trypanosoma cruzi | 2011 |
Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection.
Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A(2) (TXA(2)). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA(2) is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA(2) accounts for up to 90% of the circulating levels of TXA(2) in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA(2) receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA(2) synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA(2) in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA(2) may result in novel therapeutic targets for a disease with limited treatment options. Topics: Acute Disease; Animals; Cells, Cultured; Chagas Disease; GTP-Binding Protein alpha Subunits, Gq-G11; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, Thromboxane A2, Prostaglandin H2; Signal Transduction; Thromboxane A2; Trypanosoma cruzi | 2007 |
Circulating levels of cyclooxygenase metabolites in experimental Trypanosoma cruzi infections.
Trypanosoma cruzi induces inflammatory reactions in several tissues. The production of prostaglandin F2alpha, 6-keto-prostaglandin F1alpha and thromboxane B2, known to regulate the immune response and to participate in inflammatory reactions, was studied in mice experimentally infected with T. cruzi. The generation of nitric oxide (NO), which could be regulated by cyclooxygenase metabolites, was also evaluated. In the acute infection the extension of inflammatory infiltrates in skeletal muscle as well as the circulating levels of cyclooxygenase metabolites and NO were higher in resistant C3H mice than in susceptible BALB/c mice. In addition, the spontaneous release of NO by spleen cells increased earlier in the C3H mouse strain. In the chronic infections, the tissue inflammatory reaction was still prominent in both groups of mice, but a moderate increase of thromboxane B2 concentration and in NO released by spleen cells was observed only in C3H mice. This comparative study shows that these mediators could be mainly related to protective mechanisms in the acute phase, but seem not to be involved in its maintenance in the chronic T. cruzi infections. Topics: Acute Disease; Animals; Chagas Disease; Chronic Disease; Dinoprostone; Disease Susceptibility; Epoprostenol; Inflammation; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Muscle, Skeletal; Nitric Oxide; Prostaglandin-Endoperoxide Synthases; Species Specificity; Spleen; Thromboxane A2; Thromboxane B2 | 2004 |