thromboxane-a2 has been researched along with Aortic-Coarctation* in 2 studies
2 other study(ies) available for thromboxane-a2 and Aortic-Coarctation
Article | Year |
---|---|
Peripheral hypertension and alterations in pulmonary vascular regulation.
We have recently reported in normal isolated-perfused rat lungs that low basal tone appears to be regulated by nitric oxide (NO)-dependent and -independent mechanisms of soluble guanylate cyclase activation. In this study, we examined the role of NO in the regulation of pulmonary artery (PA) tone from rats with renin-dependent hypertension. Rats were made hypertensive by ligating the abdominal aorta above the left and below the right renal artery (aortic coarctation, AC). Mean arterial pressure significantly increased from 119 +/- 8.4 mmHg in control animals to 156 +/- 15 mmHg 7-14 days after AC surgery. PA pressures, however, remained unchanged (8.5 +/- 3.4 mmHg in control animals vs. 11 +/- 3.3 mmHg in AC animals). Hypoxic contractions in U-46619 precontracted isolated small PA (160-260 microns diameter) were significantly increased from 51 +/- 13 mg in the control group to 142 +/- 38 mg (P < or = 0.05) in AC animals. Nitro-L-arginine (NLA; 100 microM) contractions were also enhanced in the AC animal. The enhanced NLA response may correlate with an increase in endothelial cell NO synthase (NOS) as detected by Western blotting (132 +/- 28% of control; P < 0.05). These data suggest that, in this renin-dependent model of systemic hypertension, there is increased endothelial cell NOS activity that maintains low PA tone, preventing the lung from developing increased pressures. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta, Abdominal; Aortic Coarctation; Blood Pressure; Endothelium, Vascular; Guanylate Cyclase; Hypertension; Hypoxia; In Vitro Techniques; Male; Muscle Contraction; Muscle Tonus; Muscle, Smooth, Vascular; Nitric Oxide Synthase; Nitroarginine; Prostaglandin Endoperoxides, Synthetic; Pulmonary Artery; Pulmonary Circulation; Rats; Rats, Sprague-Dawley; Regression Analysis; Renin; Thromboxane A2; Vasoconstrictor Agents | 1997 |
Role of endothelium-derived prostanoid in angiotensin-induced vasoconstriction.
To test the hypothesis that prostanoids contribute to angiotensin II-induced vascular contraction, we compared the effect of angiotensin II on isometric tension development by rings of descending thoracic aorta bathed in Krebs' bicarbonate buffer with and without indomethacin (10 microM) to inhibit cyclooxygenase, CGS13080 (10 microM) to inhibit thromboxane A2 synthesis, or SQ29548 (1 microM) to block thromboxane A2/prostaglandin endoperoxide receptors. The comparisons were made in rings of aorta taken from normotensive rats and from rats with aortic coarctation-induced hypertension at 12 days and 90-113 days after coarctation. These rings released thromboxane B2, which was found to be endothelium dependent, increased in hypertensive rats, and stimulated by angiotensin II (10(-6) M) in normotensive rats and in hypertensive rats at 12 days after coarctation. The angiotensin II (10(-6) to 10(-5)M)-induced contraction of aortic rings was increased by about 30% at 12 days after coarctation and decreased at 90-113 days after coarctation. Removal of the endothelium increased the contractile effect of angiotensin II (10(-6) M) in aortic rings of normotensive rats and hypertensive rats at 90-113 days after coarctation but decreased the effect in aortic rings of hypertensive rats at 12 days after coarctation. In rats at 12 days after coarctation, the angiotensin II (10(-6) M)-induced contraction of aortic rings with endothelium was attenuated by indomethacin and SQ29548 but not by CGS13080. These data suggest that a prostanoid-mediated and endothelium-dependent mechanism of vasoconstriction contributes to the constrictor effect of angiotensin II in aortic rings of rats in the early phase of aortic coarctation-induced hypertension. Topics: Acetylcholine; Analysis of Variance; Angiotensin II; Animals; Aorta; Aortic Coarctation; Bridged Bicyclo Compounds, Heterocyclic; Dose-Response Relationship, Drug; Endothelins; Endothelium; Fatty Acids, Unsaturated; Hydrazines; Hypertension; Imidazoles; In Vitro Techniques; Indomethacin; Isometric Contraction; Male; Phenylephrine; Prostaglandin Endoperoxides, Synthetic; Pyridines; Rats; Rats, Inbred Strains; Thromboxane A2; Thromboxane B2; Thromboxane-A Synthase; Vasoconstriction | 1991 |