thromboxane-a2 and Adenocarcinoma-of-Lung

thromboxane-a2 has been researched along with Adenocarcinoma-of-Lung* in 2 studies

Other Studies

2 other study(ies) available for thromboxane-a2 and Adenocarcinoma-of-Lung

ArticleYear
Thromboxane A2 exerts promoting effects on cell proliferation through mediating cyclooxygenase-2 signal in lung adenocarcinoma cells.
    Journal of cancer research and clinical oncology, 2014, Volume: 140, Issue:3

    Lung cancer concerns a worldwide health problem and the efficacy of available treatments is unsatisfactory. Recently, thromboxane A2 (TXA2) synthase (TXAS) and receptor (TXA2R) have been documented to play a role in lung cancer development. Therefore, dual TXA2R modulator (i.e., the dual blocker of TXAS and TXA2R) may be more efficacious to kill lung tumor cells than single TXAS inhibitor or TXA2R antagonism. The close relationship between cyclooxygenase (COX)-2 and TXAS also raises whether or how TXA2 contributes to the oncogenic activity of COX-2. This study is therefore conducted to answer these questions.. Various inhibitors and siRNA were used to evaluate the roles of TXA2 and COX-2 in the proliferation and apoptosis of lung adenocarcinoma cells. Cell proliferation was detected using both MTS ELISA and BrdU labeling ELISA. Cell cycle distribution and apoptosis were examined by flow cytometric analysis. TXB2 level, reflecting the biosynthesis of TXA2, was detected by peroxidase-labeled TXB2 conjugates using an enzyme immunoassay kit. Western blotting was performed to evaluate many biomarkers for cell cycles, apoptosis and proliferation. The levels of COXs were screened by reverse transcriptase and real-time quantitative PCR.. We found either single TXAS inhibitor/TXA2R antagonist or the dual TXA2 modulators offered a similar inhibition on cell proliferation. Moreover, inhibition of TXA2 arrested cells at the G2/M phase and induced apoptosis. It is further demonstrated that TXA2 was able to function as a critical mediator for tumor-promoting effects of COX-2 in lung adenocarcinoma cells.. The present study has for the first shown that dual TXA2 modulators and the single blocker of TXAS or TXA2R offer a similar inhibitory role in lung adenocarcinoma cell proliferation and that the tumor-promoting effects of COX-2 can largely be relayed by TXA2. Thus, TXA2 should be regarded as a critical molecule in COX-2-mediated tumor growth and a valuable target against lung cancer.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenocarcinoma; Adenocarcinoma of Lung; Antineoplastic Agents; Apoptosis; Benzofurans; Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Fatty Acids, Unsaturated; Flow Cytometry; Humans; Hydrazines; Immunoenzyme Techniques; Lung Neoplasms; Nitrobenzenes; Real-Time Polymerase Chain Reaction; Receptors, Thromboxane; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Sulfonamides; Sulfonylurea Compounds; Thromboxane A2; Thromboxane-A Synthase

2014
Increased expression of matrix metalloproteinases mediates thromboxane A2-induced invasion in lung cancer cells.
    Current cancer drug targets, 2012, Volume: 12, Issue:6

    Thromboxane A(2) receptor (TP) has been shown to play an important role in multiple aspects of cancer development including regulation of tumor growth, survival and metastasis. Here we report that TP mediates cancer cell invasion by inducing expression of matrix metalloproteinases (MMPs). TP agonist, I-BOP, significantly elevated MMP-1, MMP-3, MMP-9 and MMP-10 mRNA levels in A549 human lung adenocarcinoma cells overexpressing TPα or TPβ. The secretion of MMP-1 and MMP-9 in conditioned media was determined using Western blot analysis and zymographic assay. Signaling pathways of I-BOP-induced MMP-1 expression were examined in further detail as a model system for MMPs induction. Signaling molecules involved in I-BOP-induced MMP-1 expression were identified by using specific inhibitors including small interfering (si)-RNAs of signaling molecules and promoter reporter assay. The results indicate that I-BOP-induced MMP-1 expression is mediated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)-activator protein-1(AP-1) and ERK-CCAAT/enhancer-binding protein β (C/EBPβ) pathways. I-BOP-induced cellular invasiveness of A549 cells expressing TPα or TPβ was determined by invasion assay. GM6001, a general inhibitor of MMPs, decreased basal and I-BOP-induced cell invasion. Knockdown of MMP-1 and MMP-9 by their respective siRNA partially reduced I-BOP-stimulated cell invasion suggesting that other MMPs induced by I-BOP were also involved. Our studies establish the relationship between TP and MMPs in cancer cell invasion and suggest that the thromboxane A(2) (TXA(2))-TP signaling is a potential therapeutic target for cancer invasion and metastasis.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Bridged Bicyclo Compounds, Heterocyclic; CCAAT-Enhancer-Binding Protein-beta; Cell Line, Tumor; Cell Movement; Dipeptides; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Fatty Acids, Unsaturated; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Matrix Metalloproteinase 1; Matrix Metalloproteinase 10; Matrix Metalloproteinase 3; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Neoplasm Invasiveness; Protease Inhibitors; Protein Kinase C; Receptors, Thromboxane A2, Prostaglandin H2; RNA Interference; RNA, Messenger; Signal Transduction; Thromboxane A2; Time Factors; Transcription Factor AP-1; Transfection; Up-Regulation

2012