thromboplastin has been researched along with Neoplastic-Processes* in 2 studies
2 other study(ies) available for thromboplastin and Neoplastic-Processes
Article | Year |
---|---|
Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations.
The coagulation system links immediate (hemostatic) and late (inflammatory, angiogenic) tissue responses to injury, a continuum that often is subverted in cancer. Here we provide evidence that tumor dormancy is influenced by tissue factor (TF), the cancer cell-associated initiator of the coagulation system and a signaling receptor. Thus, indolent human glioma cells deficient for TF remain viable but permanently dormant at the injection site for nearly a year, whereas the expression of TF leads to a step-wise transition to latent and overt tumor growth phases, a process that is preceded by recruitment of vascular (CD105(+)) and myeloid (CD11b(+) and F4/80(+)) cells. Importantly, the microenvironment orchestrated by TF expression drives permanent changes in the phenotype, gene-expression profile, DNA copy number, and DNA methylation state of the tumor cells that escape from dormancy. We postulate that procoagulant events in the tissue microenvironment (niche) may affect the fate of occult tumor cells, including their biological and genetic progression to initiate a full-blown malignancy. Topics: Animals; Cell Line, Tumor; DNA Copy Number Variations; DNA Methylation; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Silencing; Glioma; Humans; Mice; Mutation; Neoplastic Processes; Statistics, Nonparametric; Thromboplastin; Tumor Microenvironment | 2014 |
Role of the tissue factor pathway in the biology of tumor initiating cells.
Oncogenic transformation and aberrant cellular differentiation are regarded as key processes leading to malignancy. They produce heterogenous cellular populations including subsets of tumour initiating cells (TICs), also known as cancer stem cells (CSCs). Intracellular events involved in these changes profoundly impact the extracellular and systemic constituents of cancer progression, including those dependent on the vascular system. This includes angiogenesis, vasculogenesis, activation of the coagulation system and formation of CSC-related and premetastatic niches. Tissue factor (TF) is a unique cell-associated receptor for coagulation factor VIIa, initiator of blood coagulation, and mediator of cellular signalling, all of which influence vascular homeostasis. Our studies established a link between oncogenic events, angiogenesis and the elevated expression of TF in several types of cancer cells. The latter suggests that cancer coagulopathy and cellular events attributed to the coagulation system may have cancer-specific and genetic causes. Indeed, in human glioma cells, a transforming mutant of the epidermal growth factor receptor (EGFRvIII) triggers not only the expression of TF, but also of its ligand (factor VII) and protease activated receptors (PAR-1 and PAR-2). Consequently, tumour cells expressing EGFRvIII become hypersensitive to contact with blood borne proteases (VIIa, thrombin), which upregulate their production of angiogenic factors (VEGF and IL-8), and contribute to formation of the growth promoting microenvironment (niche). Moreover, TF overexpression accompanies features of cellular aggressiveness such as markers of CSCs (CD133), epithelial-to-mesenchymal transition (EMT) and expression of the angiogenic and prometastatic phenotype. Conversely, TF blocking antibodies inhibit tumour growth, angiogenesis, and especially tumour initiation upon injection of threshold numbers of tumourigenic cells. Likewise, TF depletion in the host compartment (e.g. in low-TF mice) perturbs tumour initiation. These observations suggest that both cancer cells and their adjacent host stroma contribute TF activity to the tumour microenvironment. We postulate that the TF pathway may play an important role in formation of the vascular niche for tumour initiating CSCs, through its procoagulant and signalling effects. Therapeutic blockade of these mechanisms could hamper tumour initiation processes, which are dependent on CSCs and participate in tumour onset, recurr Topics: Animals; Cell Differentiation; Gene Expression Regulation, Neoplastic; Humans; Neoplasms; Neoplastic Processes; Neoplastic Stem Cells; Receptors, Proteinase-Activated; Thromboplastin | 2010 |