thromboplastin has been researched along with Blast-Injuries* in 2 studies
2 other study(ies) available for thromboplastin and Blast-Injuries
Article | Year |
---|---|
The abnormalities of coagulation and fibrinolysis in acute lung injury caused by gas explosion.
Acute lung injury (ALI) caused by gas explosion is common, and warrants research on the underlying mechanisms. Specifically, the role of abnormalities of coagulation and fibrinolysis in this process has not been defined. It was hypothesized that the abnormal coagulation and fibrinolysis promoted ALI caused by gas explosion. Based on the presence of ALI, 74 cases of gas explosion injury were divided into the ALI and non-ALI groups. The results of prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and platelet count (PLT) were collected within 24 hours and compared between the groups. ALI models caused by gas explosion were established in Sprague Dawley rats, and injuries were evaluated using hematoxylin and eosin (HE) staining and histopathological scoring. Moreover, the bronchoalveolar lavage fluid (BALF) was collected to examine thrombin-antithrombin complex (TAT), tissue factor (TF), tissue factor pathway inhibitor (TFPI), and plasminogen activator inhibitor-1 (PAI-1) levels by enzyme-linked immunosorbent assay (ELISA). The patients in ALI group had shorter PT and longer APTT, raised concentration of FIB and decreased number of PLT, as compared to the non-ALI group. In ALI rats, the HE staining revealed red blood cells in alveoli and interstitial thickening within 2 hours which peaked at 72 hours. The levels of TAT/TF in the BALF increased continually until the seventh day, while the PAI-1 was raised after 24 hours and 7 days. The TFPI was elevated after 2 hours and 24 hours, and then decreased after 72 hours. Abnormalities in coagulation and fibrinolysis in lung tissues play a role in ALI caused by gas explosion. Topics: Acute Lung Injury; Animals; Antithrombin III; Blast Injuries; Blood Platelets; Bronchoalveolar Lavage Fluid; Explosions; Fibrinogen; Fibrinolysis; Gases; Humans; Lipoproteins; Lung; Partial Thromboplastin Time; Peptide Hydrolases; Plasminogen Activator Inhibitor 1; Platelet Count; Prothrombin Time; Rats; Rats, Sprague-Dawley; Thromboplastin | 2020 |
Overpressure blast injury-induced oxidative stress and neuroinflammation response in rat frontal cortex and cerebellum.
Overpressure blast-wave induced brain injury (OBI) and its long-term neurological outcome pose significant concerns for military personnel. Our aim is to investigate the mechanism of injury due to OBI.. Rats were divided into 3 groups: (1) Control, (2) OBI (exposed 30psi peak pressure, 2-2.5ms), (3) Repeated OBI (r-OBI) (three exposures over one-week period). Lung and brain (cortex and cerebellum) tissues were collected at 24h post injury.. The neurological examination score was worse in OBI and r-OBI (4.2±0.6 and 3.7±0.5, respectively) versus controls (0.7±0.2). A significant positive correlation between lung and brain edema was found. Malondialdehyde (index for lipid peroxidation), significantly increased in OBI and r-OBI groups in cortex (p<0.05) and cerebellum (p<0.01-0.001). The glutathione (endogenous antioxidant) level decreased in cortex (p<0.01) and cerebellum (p<0.05) of r-OBI group when compared with the controls. Myeloperoxidase activity indicating neutrophil infiltration, was significantly (p<0.01-0.05) elevated in r-OBI. Additionally, tissue thromboplastin activity, a coagulation marker, was elevated, indicating a tendency to bleed. NGF and NF-κB proteins along with Iba-1 and GFAP immunoreactivity significantly augmented in the frontal cortex demonstrating microglial activation. Serum biomarkers of injury, NSE, TNF-alpha and leptin, were also elevated.. OBI triggers both inflammation and oxidative injury in the brain. This data in conjunction with our previous observations suggests that OBI triggers a cascade of events beginning with impaired cerebral vascular function leading to ischemia and chronic neurological consequences. Topics: Animals; Blast Injuries; Blood-Brain Barrier; Brain Edema; Cerebellum; Disease Models, Animal; Frontal Lobe; Gliosis; Glutathione; Inflammation; Leptin; Lung; Male; Malondialdehyde; Microglia; Oxidative Stress; Peroxidase; Rats, Sprague-Dawley; Thromboplastin | 2018 |