thiourea has been researched along with Salmonella-Infections--Animal* in 2 studies
2 other study(ies) available for thiourea and Salmonella-Infections--Animal
Article | Year |
---|---|
Pulsed-field gel electrophoresis-based subtyping of DNA degradation-sensitive Salmonella enterica subsp. enterica serovar Livingstone and serovar Cerro isolates obtained from a chicken layer farm.
Salmonella enterica serovar subsp. enterica Livingstone and serovar Cerro isolates from a commercial egg-producing farm, which had previously been untypeable by pulsed-field gel electrophoresis (PFGE) because of DNA degradation during the PFGE process, successfully gave banding patterns using electrophoresis buffer supplemented with 50 microM thiourea. By PFGE in the presence of thiourea, DNA degradation-sensitive S. enterica serovar Cerro isolates from the commercial egg-producing farm were found to be genetically unrelated to S. enterica serovar Cerro isolates that gave the patterns in the absence of thiourea. Forty-five of 50 (90%) S. enterica serovar Livingstone isolates from the farm showed arbitrarily designated XbaI-digested patterns X1 and X2 that were distinguished by one-band difference and had an identical BlnI-digested pattern. In one of the two layer houses in the farm, the numbers of isolates having the pattern X2 increased from 57% in 1997 to 89% in 1998, whereas virtually all the isolates obtained from the other house in the same period showed the profile X1. This suggests that strains having the pattern X2 might have an advantage to preferentially colonize in the former house. Topics: Animals; Chickens; DNA, Bacterial; Electrophoresis, Gel, Pulsed-Field; Female; Housing, Animal; Poultry Diseases; Salmonella enterica; Salmonella Infections, Animal; Serotyping; Thiourea | 2004 |
Dimethylthiourea protects rats against gram-negative sepsis and decreases tumor necrosis factor and nuclear factor kappaB activity.
The thiol-containing compound dimethylthiourea (DMTU) is a known protectant in various models of oxidant-mediated tissue damage. Protective effects of DMTU have also been reported in studies on endotoxin-induced (LPS-induced) tissue injury. DMTU may exert this protective effect by reducing oxidative stress. In this study we investigated the effect of DMTU on survival, oxidative stress, and tumor necrosis factor (TNF) activity in two rat models of gram-negative bacterial sepsis. Intraperitoneal injection of 500 mg DMTU/kg protected against the lethal effects of intraperitoneally injected LPS (5 mg/kg) and live Salmonella typhimurium (3.3 x 10(10) CFU/kg). LPS injection resulted in oxidative stress, as indicated by an elevated concentration of hydrogen peroxide (H(2)O(2)) in normal and carbon monoxide-treated deproteinized blood. We also observed increased H(2)O(2) levels in animals injected with live Salmonella typhimurium. Although DMTU improved survival in both models, H(2)O(2) concentrations were not affected by it. This is consistent with our in vitro observation that DMTU is a weak H(2)O(2) scavenger. Serum TNF activity, however, was substantially decreased by DMTU, and this was associated with a reduced activation of nuclear factor kappaB in the peritoneal cells of LPS-treated rats. In addition, LPS-induced TNF production in vitro by rat peritoneal macrophages was inhibited by DMTU (p < 0.05). These results suggest that the protective effect of DMTU in gram-negative bacterial sepsis may be the result of a reduction in TNF activity. DMTU does not exert this effect by H(2)O(2) scavenging but may inactivate toxic H(2)O(2) metabolites. Topics: Animals; Free Radical Scavengers; Male; NF-kappa B; Rats; Rats, Wistar; Salmonella; Salmonella Infections, Animal; Sepsis; Thiourea; Tumor Necrosis Factor-alpha | 1997 |