thiourea has been researched along with Nephrosis* in 3 studies
3 other study(ies) available for thiourea and Nephrosis
Article | Year |
---|---|
Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system.
Heparan sulfate (HS) in the glomerular basement membrane (GBM) is important for regulation of the charge-dependent permeability. Heparanase has been implicated in HS degradation in several proteinuric diseases. This study analyzed the role of heparanase in HS degradation in Adriamycin nephropathy (AN), a model of chronic proteinuria-induced renal damage. Expression of heparanase, HS, and the core protein of agrin (to which HS is attached) was determined on kidney sections from rats with AN in different experiments. First, expression was examined in a model of unilateral AN in a time-course study at 6-wk intervals until week 30. Second, rats were treated with the hydroxyl radical scavenger dimethylthiourea (DMTU) during bilateral AN induction. Finally, 6 wk after AN induction, rats were treated with angiotensin II receptor type 1 antagonist (AT1A) or vehicle for 2 wk. Heparanase expression was increased in glomeruli of rats with AN, which correlated with HS reduction at all time points and in all experiments. Treatment with DMTU prevented the increased heparanase expression, the loss of GBM HS, and reduced albuminuria. Finally, treatment of established proteinuria with AT1A significantly reduced heparanase expression and restored glomerular HS. In conclusion, an association between heparanase expression and reduction of glomerular HS in AN was observed. The effects of DMTU suggest a role for reactive oxygen species in upregulation of heparanase. Antiproteinuric treatment by AT1A decreased heparanase expression and restored HS expression. These results suggest involvement of radicals and angiotensin II in the modulation of GBM permeability through HS and heparanase expression. Topics: Agrin; Angiotensin Receptor Antagonists; Animals; Doxorubicin; Enzyme Induction; Gene Expression Regulation; Glomerular Basement Membrane; Glucuronidase; Heparitin Sulfate; Imidazoles; Kidney Tubules; Male; Nephrosis; Proteinuria; Rats; Rats, Wistar; Reactive Oxygen Species; Renin-Angiotensin System; Tetrazoles; Thiourea | 2006 |
Synergistic effects of fish oil diet and dimethylthiourea in acute adriamycin nephrosis.
The synergistic effects of combining fish oil (FO) diet, which reduces thromboxane A production, with the free radical scavenger, dimethylthiourea (DMTU), were evaluated in acute adriamycin nephrosis, because proteinuria in adriamycin nephrosis is mediated by increased renal thromboxane A and free radical production. The effects of combined evening primrose oil (EPO) and DMTU were compared with the DMTU + FO combination because EPO increases prostaglandin E but not thromboxane A. After 7, 14, and 21 days, proteinuria was significantly (p < 0.05) reduced in rats receiving either DMTU + corn oil (CO) or DMTU + FO compared with untreated control rats. However, after 21 days, rats receiving DMTU + FO had significantly reduced urine protein excretion compared with those receiving DMTU + CO (103.9 +/- 20 mg daily vs 351.8 +/- 29.8 mg daily; P < 0.05). In contrast to FO, rats receiving EPO + DMTU had similar urine protein excretion to rats receiving DMTU + CO after 21 days (170.2 +/- 20.34 mg daily vs 179.45 +/- 26.38 mg daily). The mean serum cholesterol concentration was significantly (P < 0.01) reduced in rats receiving DMTU + FO (195.2 +/- 23.8 mg/dL) compared with DMTU + CO (377.9 +/- 28.5 mg/dL). Serum triglyceride levels also were significantly (P < 0.01) reduced in rats receiving DMTU + FO (52.5 +/- 26.4 mg/dL) compared with DMTU + CO (100.5 +/- 36.9 mg/dL). No significant differences in serum cholesterol concentrations or triglycerides occurred between rats receiving DMTU + CO and DMTU + EPO. Renal glutathione content was significantly (P < 0.05) increased by 23% in normal rats receiving FO diet and by 34% in rats receiving combined DMTU + FO compared with CO alone.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Cholesterol; Corn Oil; Dietary Fats; Doxorubicin; Drug Therapy, Combination; Fatty Acids, Essential; Fish Oils; gamma-Linolenic Acid; Glutathione; Hypolipidemic Agents; Kidney; Linoleic Acids; Nephrosis; Oenothera biennis; Plant Oils; Proteinuria; Random Allocation; Rats; Rats, Sprague-Dawley; Reference Values; Thiourea; Time Factors; Triglycerides | 1994 |
Amelioration of glomerular injury in doxorubicin hydrochloride nephrosis by dimethylthiourea.
The hydroxyl radical scavengers dimethylthiourea (DMTU), sodium benzoate, and dimethylsulfoxide (DMSO) were administered to rats before doxorubicin hydrochloride (ADR) (5 mg/kg, IV) to probe the role of free radicals in mediating proteinuria in doxorubicin hydrochloride nephrosis (AN). Because ADR stimulates free radical production, the role of renal glutathione was also evaluated; glutathione metabolism is involved in tissue detoxification processes. DMTU administration to rats with AN caused a significant (p less than 0.01) reduction in their proteinuria after 7 days (52.84 +/- 13.21 mg/24 hours) when they were compared with ADR controls (155.81 +/- 20.16 mg/24 hours). In similar fashion, their urine albumin excretion was also significantly reduced when compared with that of ADR controls (11.13 +/- 2.75 mg/24 hours vs 32.08 +/- 4.14 mg/24 hours; p less than 0.01). DMTU-treated rats also had significantly (p less than 0.001) reduced urinary protein and albumin excretion at 14 days when compared with rats that received ADR alone. The urinary excretion of lysozyme and N-acetyl-glucosaminidase, markers of renal tubular injury, were significantly increased after 7 or 14 days in rats with AN, despite DMTU treatment. Creatinine clearance was significantly reduced (p less than 0.05) in rats receiving ADR alone (0.223 +/- 0.011 ml/min/100 gm) when compared with that in normal controls (0.331 +/- 0.027 ml/min/100 gm) or DMTU-treated rats (0.289 +/- 0.035 ml/min/100 gm). Unlike DMTU, neither sodium benzoate nor DMSO reduced proteinuria in rats with AN.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acetylglucosaminidase; Albuminuria; Animals; Benzoates; Benzoic Acid; Creatine; Dimethyl Sulfoxide; Disease Models, Animal; Doxorubicin; Free Radical Scavengers; Glomerular Filtration Rate; Glutathione; Hydroxides; Hydroxyl Radical; Injections, Intravenous; Kidney Cortex; Male; Muramidase; Nephrosis; Proteinuria; Rats; Rats, Inbred Strains; Thiourea | 1991 |