thiourea and Hepatic-Encephalopathy

thiourea has been researched along with Hepatic-Encephalopathy* in 2 studies

Other Studies

2 other study(ies) available for thiourea and Hepatic-Encephalopathy

ArticleYear
THDP17 decreases ammonia production through glutaminase inhibition. A new drug for hepatic encephalopathy therapy.
    PloS one, 2014, Volume: 9, Issue:10

    Ammonia production is implicated in the pathogenesis of hepatic encephalopathy (HE), being intestinal glutaminase activity the main source for ammonia. Management of ammonia formation can be effective in HE treatment by lowering intestinal ammonia production. The use of glutaminase inhibitors represents one way to achieve this goal. In this work, we have performed a search for specific inhibitors that could decrease glutaminase activity by screening two different groups of compounds: i) a group integrated by a diverse, highly pure small molecule compounds derived from thiourea ranging from 200 to 800 Daltons; and ii) a group integrated by commonly use compounds in the treatment of HE. Results shown that THDP-17 (10 µM), a thiourea derivate product, could inhibit the intestinal glutaminase activity (57.4±6.7%). Inhibitory effect was tissue dependent, ranging from 40±5.5% to 80±7.8% in an uncompetitive manner, showing Vmax and Km values of 384.62 µmol min(-1), 13.62 mM with THDP-17 10 µM, respectively. This compound also decreased the glutaminase activity in Caco-2 cell cultures, showing a reduction of ammonia and glutamate production, compared to control cultures. Therefore, the THDP-17 compound could be a good candidate for HE management, by lowering ammonia production.

    Topics: Ammonia; Caco-2 Cells; Cell Survival; Drug Discovery; Enzyme Inhibitors; Glutaminase; Hepatic Encephalopathy; Humans; Small Molecule Libraries; Thiourea

2014
The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure.
    Journal of hepatology, 1999, Volume: 31, Issue:1

    Reactive oxygen species, proinflammatory cytokines, glutathione depletion and nitric oxide have all been implicated in the pathogenesis of fulminant hepatic failure. The aim of the present study was to examine the respective roles of these factors in the pathogenesis of thioacetamide-induced fulminant hepatic failure in rats.. Fulminant hepatic failure was induced by 3 consecutive intraperitoneal injections of thioacetamide (400 mg/kg) at 24-h intervals. Rats were pretreated with one of the following agents: the free radical scavengers dimethylsulfoxide (4 g/kg every 6 h) or dimethylthiourea (200 mg/kg every 12 h), the glutathione donor, N-acetylcysteine (130 or 200 mg/kg every 6 h), or the anti-tumor necrosis factor-alpha agents pentoxifylline (100 and 200 mg/kg) and soluble tumor necrosis factor receptor (100 or 1000 microg/rat). The nitric oxide synthase inhibitor N-mono-methyl arginine ester (L-NAME, 0.1 mg/ml) was administered in the drinking water, starting 7 days prior to thioacetamide administration.. Serum levels of liver enzymes, blood ammonia and prothrombin time and the stage of hepatic encephalopathy were significantly improved in rats treated with dimethylsulfoxide or dimethylthiourea compared to the other treatment groups (p<0.001). Liver histology and the survival rate in these rats were not adversely affected by thioacetamide administration (p<0.001), while in all the other treatment groups those parameters were similar to control rats with fulminant hepatic failure. Furthermore, dimethylsulfoxide ameliorated liver damage and improved survival even when its administration was initiated 8 and 16 h after the first thioacetamide injection. The hepatic concentration of methanesulfinic acid, which is produced after direct interaction of dimethylsulfoxide with hydroxyl radicals, was increased five-fold in rats treated with thioacetamide+dimethylsulfoxide (p<0.001), suggesting a role for hydroxyl radical scavenging in the protection from fulminant hepatic failure in this model. In the group of thioacetamide-treated rats that were pretreated with L-NAME, liver enzymes, blood ammonia levels and the mortality rate were higher than in the control group, treated with thioacetamide only.. In thioacetamide-induced fulminant hepatic failure, the hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea prevent liver injury. Neither N-acetylcysteine nor antagonists of tumor necrosis factor-alpha are protective in this rat model. Inhibition of nitric oxide formation aggravates liver damage and reduces the survival of rats with thioacetamide-induced liver damage.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Dimethyl Sulfoxide; Free Radical Scavengers; Hepatic Encephalopathy; Hydroxyl Radical; L-Lactate Dehydrogenase; Liver; Male; NG-Nitroarginine Methyl Ester; Pentoxifylline; Rats; Rats, Wistar; Thioacetamide; Thiourea

1999