thiourea has been researched along with Fibrosarcoma* in 2 studies
2 other study(ies) available for thiourea and Fibrosarcoma
Article | Year |
---|---|
Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria.
Statins are effective cholesterol-lowering drugs that exert pleiotropic effects, including cytotoxicity to cancer cells. We previously reported that simvastatin triggered the mitochondrial apoptotic pathway in MethA fibrosarcoma cells, which was accompanied by the translocation of stabilized p53 to the mitochondria. In this study, we investigated whether statins induce the endoplasmic reticulum (ER) stress response and the mechanisms by which this response is linked to the stabilization of p53 and its translocation to the mitochondria. Statins induced typical ER stress-related proteins, such as BiP/78 kDa glucose-regulated protein (Grp78) and CCAAT/enhancer-binding protein homologous protein (CHOP), as well as the phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), eIF2α and JNK. The statin-induced phosphorylation of eIF2α and JNK was inhibited by supplementation with components of the mevalonate pathway, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Salubrinal, an inhibitor of the dephosphorylation of eIF2α, suppressed the loss of mitochondrial membrane potential and the translocation of stabilized p53 and Bax to the mitochondria; however, SP600125, a JNK kinase inhibitor, did not exert this effect. Furthermore, the eIF2α knockdown sensitized cells to simvastatin-induced apoptosis and the overexpression of a non-phosphorylatable eIF2α-mutant [serine 51(Ser51)/alanine] enhanced the stabilization of p53 and its translocation to the mitochondria in response to simvastatin treatment. Taken together, these data indicate that eIF2α phosphorylation in the context of the ER stress response plays a role in cell survival by counteracting the p53-mediated mitochondrial apoptosis in response to statins. Topics: Animals; Anthracenes; Anticholesteremic Agents; Apoptosis; bcl-2-Associated X Protein; Cell Line, Tumor; Cell Survival; Cinnamates; eIF-2 Kinase; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Fibrosarcoma; Heat-Shock Proteins; Hydroxymethylglutaryl-CoA Reductase Inhibitors; JNK Mitogen-Activated Protein Kinases; Membrane Potential, Mitochondrial; Mevalonic Acid; Mice; Mitochondria; Phosphorylation; Polyisoprenyl Phosphates; Protein Transport; RNA Interference; RNA, Small Interfering; Sesquiterpenes; Signal Transduction; Simvastatin; Thiourea; Transcription Factor CHOP; Tumor Suppressor Protein p53 | 2013 |
Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases.
Vascular disrupting agents (VDA) offer a strategy to starve solid tumors of nutrients and oxygen concomitant with tumor shrinkage. Several VDAs have progressed into early clinical trials, but their therapeutic value seems to be compromised by systemic toxicity. In this report, we describe the design and characterization of a novel VDA, ICT2588, that is nontoxic until activated specifically in the tumor by membrane-type 1 matrix metalloproteinase (MT1-MMP). HT1080 cancer cells expressing MT1-MMP were selectively chemosensitive to ICT2588, whereas MCF7 cells that did not express MT1-MMP were nonresponsive. Preferential hydrolysis of ICT2588 to its active metabolite (ICT2552) was observed in tumor homogenates of HT1080 relative to MCF7 homogenates, mouse plasma, and liver homogenate. ICT2588 activation was inhibited by the MMP inhibitor ilomastat. In HT1080 tumor-bearing mice, ICT2588 administration resulted in the formation of the active metabolite, diminution of tumor vasculature, and hemorrhagic necrosis of the tumor. The antitumor activity of ICT2588 was superior to its active metabolite, exhibiting reduced toxicity, improved therapeutic index, enhanced pharmacodynamic effect, and greater efficacy. Coadministration of ICT2588 with doxorubicin resulted in a significant antitumor response (22.6 d growth delay), which was superior to the administration of ICT2588 or doxorubicin as a single agent, including complete tumor regressions. Our findings support the clinical development of ICT2588, which achieves selective VDA targeting based on MT-MMP activation in the tumor microenvironment. Topics: Angiogenesis Inhibitors; Animals; Breast Neoplasms; Colchicine; Doxorubicin; Female; Fibrosarcoma; Humans; Matrix Metalloproteinases; Matrix Metalloproteinases, Membrane-Associated; Mice; Mice, Inbred BALB C; Mice, Nude; Neovascularization, Pathologic; Oligopeptides; Thiourea; Tissue Distribution; Xenograft Model Antitumor Assays | 2010 |