thiourea and Bronchial-Hyperreactivity

thiourea has been researched along with Bronchial-Hyperreactivity* in 4 studies

Other Studies

4 other study(ies) available for thiourea and Bronchial-Hyperreactivity

ArticleYear
SPA0355 suppresses T-cell responses and reduces airway inflammation in mice.
    European journal of pharmacology, 2014, Dec-15, Volume: 745

    In recent studies, SPA0355, a thiourea analog, has been demonstrated to possess strong anti-inflammatory activity. However, the mechanisms underlying the effects of SPA0355 on immune-mediated diseases have not been fully defined. The present study was designed to investigate the immunological and molecular mechanisms by which SPA0355 modulates cluster of differentiation of (CD4)(+) T-cell-mediated immune responses in allergic airway inflammation. In vitro studies have shown that SPA0355 suppresses CD4(+) T-cell activation, proliferation, and differentiation via modulation of T-cell receptor (TCR) signal transduction and cytokine-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. Next, we investigated the efficacy of SPA0355 in ovalbumin (OVA)-induced allergic airway inflammation. Intraperitoneal administration of SPA0355 inhibited inflammatory cell recruitment into the airways as well as the production of Th2 cytokines in bronchoalveolar fluid and suppressed OVA-induced IgE production in serum. Additionally, SPA0355 suppressed mucin production and smooth muscle hypertrophy and prevented the development of airway hyperresponsiveness. Given that allergic airway inflammation is mainly driven by Th2 cell responses, it is highly possible that the defects in CD4(+) T-cell activation and Th2 cell differentiation in the draining lymph nodes and suppressed NF-κB activation in the lungs of SPA0355-treated mice illustrate an immunological mechanism of the preventive effect of SPA0355 on the aforementioned asthmatic characteristics. Collectively, our results suggest that SPA0355 directly modulates Th1 and Th2 responses through the suppression of multiple signaling pathways triggered by TCR or cytokine receptor stimulation, and that SPA0355 has protective effects in a murine model of allergic airway inflammation.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Asthma; Benzoxazines; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; CD4-Positive T-Lymphocytes; Chemotaxis, Leukocyte; Cytokines; Disease Models, Animal; Immunosuppressive Agents; In Vitro Techniques; Lymphocyte Activation; Male; Mice; Mice, Inbred BALB C; Mucins; NF-kappa B; Ovalbumin; Receptors, Antigen, T-Cell; Signal Transduction; Thiourea

2014
Reverse-mode NCX current in mouse airway smooth muscle: Na(+) and voltage dependence, contributions to Ca(2+) influx and contraction, and altered expression in a model of allergen-induced hyperresponsiveness.
    Acta physiologica (Oxford, England), 2012, Volume: 205, Issue:2

    We examined the electrophysiological properties of reverse-mode Na(+) /Ca(2+) exchange (NCX) in mouse airway smooth muscle (ASM), assessing its contributions to regulation of [Ca(2+) ], and its expression in acute and chronic airway hyperresponsiveness (AHR).. Membrane currents were studied in single murine ASM cells under voltage clamp at -60 mV using ramp depolarizing commands to +80 mV. Confocal fluorimetric and RT-PCR techniques were used to monitor changes in cytosolic [Ca(2+) ] and NCX expression, respectively.. With standard KCl-containing electrode, 30 μm KB-R7943 (an inhibitor of reverse-mode NCX activity) exhibited variable effects on membrane current, indicating modulation of more than one conductance. KB-R7943 activated outwardly rectifying current that was inhibited by 100 μm iberiotoxin (blocker of large-conductance Ca(2+) -dependent K(+) channels), indicating a direct enhancing effect of KB-R7943 on those K(+) channels. After obviating K(+) currents, we found that a current sensitive to 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid (blocker of Ca(2+) -dependent Cl- channels) was markedly increased by elevating [Na(+) ] in the electrode solution to 13, 15.5 and 18 mm and suppressed by KB-R7943, indicating Ca(2+) influx via reverse-mode NCX activity. With conditions preventing Ca(2+) influx through voltage-dependent Ca(2+) channels but promoting that through NCX, we found that introduction of Ca(2+) led to marked but transient KB-R7943-sensitive elevation of [Ca(2+) ]. Additionally, KB-R7943 suppressed cholinergically evoked Ca(2+) waves. Finally, NCX1 expression was not significantly changed in allergen-induced AHR acute model but increased approx. 2.5-fold in a chronic model.. Reverse-mode NCX activity leads to a physiologically relevant increase in [Ca(2+) ] even under control conditions, and this may be exaggerated in allergen-induced AHR and asthma.

    Topics: Allergens; Animals; Antigens, Dermatophagoides; Bronchi; Bronchial Hyperreactivity; Calcium; Female; Membrane Potentials; Mice; Muscle Contraction; Muscle, Smooth; Peptides; Potassium Channels, Calcium-Activated; Sodium-Calcium Exchanger; Thiourea; Trachea

2012
Wood smoke-induced airway hyperreactivity in guinea pigs: time course, and role of leukotrienes and hydroxyl radical.
    Life sciences, 2000, Volume: 66, Issue:11

    A prior airway exposure to wood smoke induces a tachykinin-dependent increase in airway responsiveness to the subsequent smoke inhalation in guinea pigs (Life Sci. 63: 1513, 1998). To further investigate the time course of, and the contribution of other chemical mediators to, this smoke-induced airway hyperresponsiveness (SIAHR), two smoke challenges (each 10 ml) separated by 30 min were delivered into the lungs of anesthetized guinea pigs by a respirator. In the control animals, the SIAHR was evidenced by the bronchoconstrictive response to the second smoke challenge (SM2) which was approximately 5.2-fold greater than that to the first challenge (SM1). This SIAHR was alleviated by shortening the elapsed time between SM1 and SM2 to 10 min or by extending it to 60 min, and was abolished by extending it to 120 min. This SIAHR was reduced by pretreatment with either MK-571 (a leukotriene D4-receptor antagonist) or dimethylthiourea (a hydroxyl radical scavenger), but was not affected by pretreatment with either pyrilamine (a histamine H1-receptor antagonist) or indomethacin (a cyclooxygenase inhibitor). The smoke-induced reduction in the neutral endopeptidase activity (a major enzyme for tachykinin degradation) measured in airway tissues excised 30 min post SM1 was largely prevented by pretreatment with dimethylthiourea. However, this reduction was not seen in airway tissues excised 120 min post SM1. These results suggest that 1) the SIAHR to inhaled wood smoke has a rapid onset time following smoke inhalation and lasts for less than two hours, 2) leukotrienes and hydroxyl radical may play contributory roles in the development of this SIAHR, and 3) hydroxyl radical is the major factor responsible for the smoke-induced inactivation of airway neutral endopeptidase, which may possibly participate in the development of this SIAHR.

    Topics: Animals; Bronchial Hyperreactivity; Bronchodilator Agents; Guinea Pigs; Hydroxyl Radical; Leukotriene Antagonists; Leukotrienes; Male; Neprilysin; Propionates; Quinolines; Smoke; Thiourea; Wood

2000
Increased airway hyperresponsiveness and inflammation in a juvenile mouse model of asthma exposed to air-pollutant aerosol.
    Journal of toxicology and environmental health. Part A, 1999, Oct-15, Volume: 58, Issue:3

    Asthma and its exacerbation by air pollution are major public health problems. This investigation sought to more precisely model this disorder, which primarily affects children, by using very young mice. The study first attempted to create allergic airway hypersensitivity in neonatal mice and to determine if physiologic testing of airway function was possible in these small animals. Neonatal mice were sensitized by i.p. injection of ovalbumin (OVA, 5 microg) and alum (1 mg) at 3 and 7 d of age. One week later, mice were challenged by allergen nebulization (3% OVA in PBS, 10 min/d, d 14-16). OVA-exposed mice showed: (1) increased airway hyperresponsiveness (AHR) to methacholine by whole-body plethysmography; (2) eosinophilia in bronchoalveolar lavage (BAL) fluid; (3) airway inflammation using histopathology techniques; and (4) elevated serum anti-OVA immunoglobulin E. Hence, these neonatal mice were successfully sensitized and manifested "asthmatic" responses after allergen challenge. Experiments were conducted to investigate the effect of one surrogate for ambient air particles, residual oil fly ash (ROFA), on this juvenile asthma model. Aerosolized ROFA leachate (supernatant of 50 mg/ml, 30 min, on d 15) had no marked effect alone, but caused a significant increase in AHR and airway inflammation in OVA-sensitized and challenged mice. This synergistic effect was abrogated by the antioxidant dimethylthiourea (DMTU, 3 mg/kg mouse, i.p.). This model may be useful to study air pollution-mediated exacerbation of asthma in children.

    Topics: Aerosols; Air Pollutants; Allergens; Animals; Animals, Newborn; Asthma; Bronchial Hyperreactivity; Bronchitis; Carbon; Coal Ash; Enzyme-Linked Immunosorbent Assay; Free Radical Scavengers; Immunoglobulin E; Mice; Mice, Inbred BALB C; Ovalbumin; Particulate Matter; Phenotype; Plethysmography; Serine Proteinase Inhibitors; Thiourea

1999