thioperamide has been researched along with Seizures* in 8 studies
8 other study(ies) available for thioperamide and Seizures
Article | Year |
---|---|
Anticonvulsant properties of histamine H3 receptor ligands belonging to N-substituted carbamates of imidazopropanol.
Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. Therefore, the previously described and structurally strongly related imidazole-based derivatives belonging to carbamate class with high H3R in vitro affinity, in-vivo antagonist potency, and H3R selectivity profile were investigated on their anticonvulsant activity in maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in Wistar rats. The effects of systemic injection of H3R ligands 1-13 on MES-induced and PTZ-kindled seizures were screened and evaluated against the reference antiepileptic drug (AED) Phenytoin (PHT) and the standard histamine H3R inverse agonist/antagonist Thioperamide (THP) to determine their potential as new antiepileptic drugs. Following administration of the H3R ligands 1-13 (5, 10 and 15 mg/kg, ip) there was a significant dose dependent reduction in MES-induced seizure duration. The protective action observed for the pentenyl carbamate derivative 4, the most protective H3R ligand among 1-13, was significantly higher (P <0.05) than that of standard H3R antagonist THP, and was reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10mg/kg), or with the CNS penetrant H1R antagonist Pyrilamine (PYR) (10mg/kg). In addition, subeffective dose of H3R ligand 4 (5mg/kg, ip) significantly potentiated the protective action in rats pretreated with PHT (5mg/kg, ip), a dose without appreciable protective effect when given alone. In contrast, pretreatment with H3R ligand 4 (10mg/kg ip) failed to modify PTZ-kindled convulsion, whereas the reference drug PHT was found to fully protect PTZ-induced seizure. These results indicate that some of the investigated imidazole-based H3R ligands 1-13 may be of future therapeutic value in epilepsy. Topics: 1-Propanol; Animals; Anticonvulsants; Carbamates; Electroshock; Histamine Agonists; Histamine Antagonists; Imidazoles; Ligands; Rats; Rats, Wistar; Receptors, Histamine H3; Seizures | 2013 |
Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats.
Histamine H(3) receptor antagonists have been considered as potential drugs to treat central nervous system diseases. However, whether these drugs can inhibit epileptogenesis remains unclear. This study aimed to investigate the effects of thioperamide, a selective and potent histamine H(3) receptor antagonist, on the seizure development and memory impairment induced by pentylenetetrazole (PTZ)-kindling epilepsy in rats.. Chemical kindling was elicited by repeated intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35 mg/kg) once every 48 hours for 12 times, and seizure activity of kindling was recorded for 30 minutes. Control rats were ip injected with saline instead of PTZ. Morris water maze was used to evaluate the spatial memory. Phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) was tested by Western blotting in hippocampus.. Intracerebroventricular (icv) injections with thioperamide (10 µg, 20 µg) 30 minutes before every PTZ injections, significantly prolonged the onset of PTZ-kindling and inhibited the seizure stages. PTZ-kindling seizures led to the impairment of spatial memory in rats, and thioperamide ameliorated the impairment of spatial learning and memory. Compared to non-kindling rats, there was a significant decrease in p-CREB level in hippocampus of the PTZ-kindling rats, which was reversed by thioperamide.. Thioperamide plays a protective role in seizure development and cognitive impairment of PTZ-induced kindling in rats. The protection of thioperamide in cognitive impairment is possibly associated with the enhancement of CREB-dependent transcription. Topics: Animals; Anticonvulsants; Cyclic AMP Response Element-Binding Protein; Histamine H3 Antagonists; Kindling, Neurologic; Male; Memory Disorders; Neuroprotective Agents; Pentylenetetrazole; Piperidines; Rats; Rats, Sprague-Dawley; Seizures; Synaptic Transmission | 2013 |
Effect of combined treatment of thioperamide with some antiepileptic drugs on methionine-sulfoximine induced convulsions in mice.
Methionine-sulfoximine (MSO), a convulsant is known to increase the activity of histamine N-methyl transferase. The effect of a selective H3 receptor agonist R- (alpha) methylhistamine (RAMH) and antagonist (thioperamide, THP) and some antiepileptic drugs (gabapentin and sodium valproate) have been evaluated on MSO-induced convulsions in mice. The effect of THP was also evaluated in combination with these antiepileptic drugs. Sodium valproate (300 mg/kg, po) and gabapentin (400 mg/kg, po) offered protection against MSO-induced convulsions as evidenced by a significant prolongation of latency to abnormal dorsoflexion and complete protection against mortality within 6 h of administration. THP (15 mg/kg, ip) alone and in combination with sub-effective doses of gabapentin (75 mg/kg, po) and sodium valproate (75 mg/kg, po) revealed no significant differences from the control group or either drug alone. Hence, the convulsant action of MSO does not appear to be mediated via histaminergic mechanisms. Topics: Amines; Animals; Anticonvulsants; Brain; Cyclohexanecarboxylic Acids; Drug Combinations; Gabapentin; gamma-Aminobutyric Acid; Male; Methionine Sulfoximine; Mice; Piperidines; Seizures; Valproic Acid | 2010 |
Intracerebroventricular administration of histamine H3 receptor antagonists decreases seizures in rat models of epilepsia.
The effects of histamine H3 antagonists on amygdaloid kindled and maximal electroshock seizures in rats were studied to determine their potential as new antiepileptic drugs. Under pentobarbital anesthesia, rats were fixed to a stereotaxic apparatus and a stainless steel guide cannula for drug administration was implanted into the lateral ventricle. In amygdaloid kindled seizures, electrodes were implanted into the right amygdala and electroencephalogram was recorded bipolarly; stimulation was applied bipolarly every day by a constant current stimulator and continued until a generalized convulsion was obtained. In the maximal electroshock (MES) seizure test, electroconvulsion was induced by stimulating animals through ear-clip electrodes, and the durations of tonic and clonic seizures were measured. Thioperamide, clobenpropit, iodophenpropit, VUF5514, VUF5515 and VUF4929 caused a dose-dependent inhibition of both seizure stage and afterdischarge (AD) duration of amygdaloid kindled seizures. The duration of tonic seizure induced by MES was also inhibited by H3 antagonists, but the duration of clonic seizures were unchanged. Among the H3 antagonists tested, clobenpropit and iodophenpropit were somewhat more potent than the other drugs on amygdaloid kindled seizures and MES seizures, respectively. These results indicate that some H3 antagonists may be useful as antiepileptic drugs, especially for secondary generalized seizures and/or tonic-clonic seizures in humans. Topics: Amygdala; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Electroshock; Epilepsy, Tonic-Clonic; Histamine Agonists; Histamine Antagonists; Imidazoles; Injections, Intraventricular; Isothiuronium; Kindling, Neurologic; Lateral Ventricles; Male; Methylhistamines; Piperidines; Rats; Rats, Wistar; Receptors, Histamine H3; Seizures; Thiourea | 2004 |
Thioperamide, a selective histamine H3 receptor antagonist, protects against PTZ-induced seizures in mice.
The effect of selective histamine H3-receptor antagonist thioperamide was studied on PTZ-induced seizures in mice. Thioperamide significantly protected clonic seizures induced by PTZ in a dose-dependent manner. The effect of thioperamide was completely countered by pretreatment with R (alpha)-methylhistamine (RAMH), a selective H3-receptor agonist suggesting that the observed effect of thioperamide was elicited by histamine H3-receptors. RAMH alone did not significantly modify PTZ seizures. The findings are consistent with a role for the histaminergic neuronal system in seizures and suggest that H3-receptors may play an important role in modulating clonic seizures induced by PTZ in mice. Topics: Animals; Dose-Response Relationship, Drug; Histamine Antagonists; Male; Methylhistamines; Mice; Pentylenetetrazole; Piperidines; Protective Agents; Receptors, Histamine H3; Seizures | 2000 |
Lack of substantial effect of the H(3)-antagonist thioperamide and of the non-selective mixed H(3)-antagonist/H(1)-agonist betahistine on amygdaloid kindled seizures.
We investigated whether some histamine H(3)-antagonists would attenuate amygdaloid kindled seizures in rats. Thioperamide, a standard H(3)-antagonist, did not significantly reduce either seizure ranks or afterdischarge duration (ADD). Betahistine which has both H(3)-antagonistic activity and H(1)-agonistic activity significantly reduced ADD, albeit mild at a toxic dose, though seizure ranks were not affected. In addition, L-histidine, the precursor of histamine, affected neither seizure ranks, nor ADD. It was shown that H(3)-antagonists have no significant inhibitory action against amygdaloid kindled seizures, probably because released histamine was unable to inhibit those seizures. Topics: Amygdala; Animals; Betahistine; Histamine Agonists; Histamine Antagonists; Kindling, Neurologic; Male; Piperidines; Rats; Rats, Wistar; Seizures | 2000 |
The effects of histamine H3-receptor antagonists on amygdaloid kindled seizures in rats.
The effects of histamine H3-receptor antagonists, thioperamide, and clobenpropit on amygdaloid kindled seizures were investigated in rats. Both intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of H3-antagonists resulted in a dose-related inhibition of amygdaloid kindled seizures. An inhibition induced by thioperamide was antagonized by an H3-agonist [(R)-alpha-methylhistamine] and H1-antagonists (diphenhydramine and chlorpheniramine). On the other hand, an H2-antagonist (cimetidine and ranitidine) caused no antagonistic effect. Metoprine, an inhibitor of N-methyltransferase was also effective in inhibiting amygdaloid kindled seizure, and this effect was augmented by thioperamide treatment. Topics: Amygdala; Animals; Brain Chemistry; Enzyme Inhibitors; Histamine Antagonists; Histamine N-Methyltransferase; Imidazoles; Injections, Intraventricular; Kindling, Neurologic; Male; Piperidines; Pyrimethamine; Rats; Rats, Wistar; Receptors, Histamine H3; Seizures; Thiourea | 1998 |
Effect of thioperamide, a histamine H3 receptor antagonist, on electrically induced convulsions in mice.
The effect of thioperamide, a histamine H3 receptor antagonist, on electrically induced convulsions was studied in mice. Thioperamide significantly and dose dependently decreased the duration of each phase of convulsion and raised the electroconvulsive threshold. Its anticonvulsant effects were prevented by pretreatment with (R)-alpha-methylhistamine, a histamine H3 receptor agonist. These findings suggest that the effect of thioperamide on electrically induced convulsions is due to an increase in endogenous histamine release in the brain, an effect mediated by histamine H3 receptors. The anticonvulsant effect of thioperamide was antagonized strongly by mepyramine (or pyrilamine), a centrally acting histamine H1 receptor antagonist, but not by zolantidine, a centrally acting histamine H2 receptor antagonist. Thus, the blockade by mepyramine of the thioperamide-induced decrease in seizure susceptibility indicates that histamine released by thioperamide from the histaminergic nerve terminals interacts with the histamine H1 receptors of postsynaptic neurons. These findings support the hypothesis that the central histaminergic system is involved in the inhibition of seizures. Topics: Animals; Anticonvulsants; Electroshock; Histamine Antagonists; Male; Mice; Mice, Inbred Strains; Piperidines; Receptors, Histamine; Receptors, Histamine H3; Seizures | 1993 |