thioinosine has been researched along with Neoplasms* in 6 studies
1 trial(s) available for thioinosine and Neoplasms
Article | Year |
---|---|
Phase I trial of fluorouracil modulation by N-phosphonacetyl-L-aspartate and 6-methylmercaptopurine ribonucleoside.
Inhibition of pyrimidine and purine synthesis has been demonstrated to potentiate 5-fluorouracil (5-FU) activity in preclinical models. Low-dose phosphonacetyl-L-aspartate (PALA) potentiates the incorporation of 5-FU into RNA, without detectably increasing its toxicity. 6-Methylmercaptopurine riboside (MMPR) results in inhibition of purine biosynthesis with elevation of phosphoribosyl pyrophosphate (PRPP), which in turn is believed to increase the phosphorylation and intracellular retention of 5-FU. We conducted a phase I clinical trial to determine the maximum tolerated dose of 5-FU in combination with low-dose PALA and a biochemically-optimized dose of MMPR. The regimen consisted of PALA 250 mg/m2 given on day 1, followed 24 h later by MMPR 150 mg/m2, and escalating doses of 5-FU from 1625 to 2600 mg/m2 by 24 h continuous infusion. This regimen was repeated weekly. A group of 29 patients with a diagnosis of malignant solid tumor were entered; their median performance status was 1. The dose-limiting toxicity was mucositis, while other gastrointestinal toxicity was minimal. Two patients also experienced ischemic chest pain during the 5-FU infusion. The maximum tolerated dose of 5-FU in this combination was 2600 mg/m2. Several responses were observed including a complete remission in a previously treated breast cancer patient and two partial responses in breast and colon cancer. MMPR pharmacokinetics were obtained from urine analyses in 21 patients on this trial; there was no correlation between the pharmacokinetics of MMPR and the toxicity observed. This regimen was well tolerated and phase II trials are warranted using PALA 250 mg/m2, MMPR 150 mg/m2, and 5-FU 2300 mg/m2 by continuous infusion over 24 h. Topics: Adult; Aged; Aged, 80 and over; Antimetabolites, Antineoplastic; Antineoplastic Agents; Aspartic Acid; Female; Fluorouracil; Humans; Infusions, Intravenous; Male; Middle Aged; Neoplasms; Phosphonoacetic Acid; RNA, Neoplasm; Thioinosine; Thionucleotides | 1996 |
5 other study(ies) available for thioinosine and Neoplasms
Article | Year |
---|---|
Increased sensitivity to thiopurines in methylthioadenosine phosphorylase-deleted cancers.
The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), are used in the treatment of leukemia. Incorporation of deoxythioguanosine nucleotides (dG(s)) into the DNA of thiopurine-treated cells causes cell death, but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Because the growth of MTAP-deleted tumor cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP(-)) transfected to express MTAP constitutively (A549-MTAP(+)). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intracellularly to MeTIMP, was markedly higher in both cell lines under MTAP(-) conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dG(s) incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP. Topics: Antimetabolites, Antineoplastic; Cell Line, Tumor; Drug Resistance, Neoplasm; Gene Deletion; Humans; Immunoblotting; Mercaptopurine; Neoplasms; Purine-Nucleoside Phosphorylase; Purines; Thioguanine; Thioinosine; Thionucleotides | 2011 |
Biodistribution and uptake of 3'-deoxy-3'-fluorothymidine in ENT1-knockout mice and in an ENT1-knockdown tumor model.
(18)F-3'-Deoxy-3'-fluorothymidine ((18)F-FLT) is a PET tracer that accumulates in proliferating tissues. The current study was undertaken to determine whether equilibrative nucleoside transporter 1 (ENT1) is important for (18)F-FLT uptake in normal tissues and tumors.. ENT1-knockout (ENT1(-/-)) mice were generated and compared with wild-type (ENT1(+/+)) mice using small-animal (18)F-FLT PET. In addition, ENT1(+/+) mice were also injected with the ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside phosphate (NBMPR-P) at 1 h before radiotracer injection, followed by (18)F-FLT small-animal PET. Tissues of interest were analyzed for thymidine kinase 1 and nucleoside transporters by immunoblotting and immunohistochemistry, respectively, and plasma thymidine levels were analyzed by liquid chromatography-mass spectrometry. Human lung carcinoma A549 cells were stably transfected with pSUPER-producing short-hairpin RNA against human ENT1 (hENT1) or a scrambled sequence with no homology to mammalian genes (A549-pSUPER-hENT1 and A549-pSUPER-SC, respectively). Cultured transfected cells were characterized for hENT1 transcript levels and (18)F-FLT uptake using real-time polymerase chain reaction and (3)H-FLT uptake assays, respectively. Transfected A549 cells were grown as xenograft tumors in NIH-III mice, which were analyzed by (18)F-FLT small-animal PET.. Compared with noninjected ENT1(+/+) mice, ENT1(+/+) mice injected with NBMPR-P and ENT1(-/-) mice displayed a reduced percentage injected dose per gram (%ID/g) for (18)F-FLT in the blood (84 and 81%, respectively) and an increased %ID/g for (18)F-FLT in the spleen (188 and 469%, respectively) and bone marrow (266 and 453%, respectively). ENT1(-/-) mice displayed 1.65-fold greater plasma thymidine levels than did ENT1(+/+) mice. Spleen tissue from ENT1(+/+) and ENT1(-/-) mice displayed similar thymidine kinase 1 protein levels and significant concentrative nucleoside transporter 1 and 3 staining. Compared with A549-pSUPER-SC cells, A549-pSUPER-hENT1 cells displayed 0.45-fold hENT1 transcript levels and 0.68-fold (3)H-FLT uptake. Compared with A549-pSUPER-SC xenograft tumors, A549-pSUPER-hENT1 xenograft tumors displayed 0.76-fold %ID/g values (ex vivo gamma-counts) and 0.65-fold maximum standardized uptake values (PET image analysis) for (18)F-FLT uptake at 1 h after tracer injection.. Loss of ENT1 activity significantly affected (18)F-FLT biodistribution in mice and (18)F-FLT uptake in xenograft tumors, suggesting that nucleoside transporters are important mediators of (18)F-FLT uptake in normal and transformed cells. Topics: Animals; Biological Transport; Cell Line, Tumor; Cell Transformation, Neoplastic; Dideoxynucleosides; Equilibrative Nucleoside Transporter 1; Female; Gene Knockdown Techniques; Gene Knockout Techniques; Humans; Mice; Mice, Knockout; Neoplasms; Positron-Emission Tomography; RNA, Messenger; RNA, Small Interfering; Spleen; Thioinosine; Thymidine; Thymidine Kinase; Transfection | 2010 |
Tamoxifen inhibits nitrobenzylthioinosine-sensitive equilibrative uridine transport in human MCF-7 breast cancer cells.
Tamoxifen inhibits the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) to human MCF-7 breast cancer cells with an IC50 of 8 microM. Tamoxifen at 30 microM changed the apparent Kd for [3H]NBMPR binding from 0.63 +/- 0.12 to 4.75 +/- 0.58 nM, with little effect on the Bmax (311000 +/- 76000 and 263000 +/- 46000 sites per cell for untreated and tamoxifen-treated cells respectively). Corresponding to this decrease in binding of [3H]NBMPR in the presence of tamoxifen was an inhibition of NBMPR-sensitive equilibrative transport of 50 microM [3H]uridine (IC50 7-10 microM). In the presence of 15 microM tamoxifen, the apparent K(m) for [3H]uridine transport was increased from 390 +/- 30 to 1500 +/- 250 microM, with no change in Vmax (12.0 +/- 0.1 and 11.3 +/- 4.3 microM/s for untreated and tamoxifen-treated cells respectively). The inhibitory effect of tamoxifen on NBMPR-sensitive equilibrative uridine transport was specific, as similar results were also observed in HL-60 leukaemia and EL4 lymphoma cells. Furthermore a similar concentration of tamoxifen had no effect on the NBMPR-insensitive equilibrative transport of uridine in MCF-7, HL-60 and Morris 7777 hepatoma cells, and on the Na(+)-dependent transport of uridine in murine splenocytes. In this paper we demonstrate that tamoxifen by itself might have some antiproliferative effects through inhibition of DNA synthesis by blocking the nucleoside salvage pathway. Topics: Animals; Breast Neoplasms; Carrier Proteins; Cells, Cultured; Humans; Kinetics; Membrane Proteins; Mice; Neoplasms; Nucleoside Transport Proteins; Nucleosides; Protein Binding; Sodium; Spleen; Tamoxifen; Thioinosine; Uridine | 1996 |
COMPARATIVE CLINICAL TOXICITY OF 6-MERCAPTOPURINE (NSC-755)-1 AND 6-MERCAPTOPURINE RIBONUCLEOSIDE (NSC-4911)-2 ADMINISTERED INTRAVENOUSLY TO PATIENTS WITH ADVANCED CANCER.
Topics: Bone Marrow; Injections, Intravenous; Leukopenia; Mercaptopurine; Mice; Neoplasms; Nucleosides; Pharmacology; Purines; Pyrimidines; Research; Thioinosine; Thrombocytopenia; Toxicology | 1964 |
THE PREPARATION AND ANTITUMOR PROPERTIES OF ACYLATED DERIVATIVES OF 6-THIOPURINE RIBOSIDES.
Topics: Animals; Antineoplastic Agents; Chemistry, Pharmaceutical; Mercaptopurine; Neoplasms; Neoplasms, Experimental; Nucleosides; Pharmacology; Research; Thioinosine | 1964 |