thioinosine and Glioma

thioinosine has been researched along with Glioma* in 3 studies

Other Studies

3 other study(ies) available for thioinosine and Glioma

ArticleYear
The role of ecto-5'-nucleotidase/CD73 in glioma cell line proliferation.
    Molecular and cellular biochemistry, 2008, Volume: 319, Issue:1-2

    Malignant gliomas are the most common and devastating primary tumors in the brain and, despite treatment, patients with these tumors have a poor prognosis. The participation of ecto-5'-NT/CD73 per se as a proliferative factor, being involved in the control of cell growth, differentiation, invasion, migration and metastasis processes has been previously proposed. In the present study, we evaluated the activity and functions of ecto-5'-NT/CD73 during the proliferation process of rat C6 and human U138MG glioma cell lines. Increasing confluences and culture times led to an increase in ecto-5'-NT/CD73 activity in both C6 and U138MG glioma cells. RT-PCR analysis and flow cytometry analysis showed a significant increase in ecto-5'-NT/CD73 mRNA and protein levels, respectively, comparing confluent with sub-confluent cultures in human U138MG glioma cells. Ecto-5'-nucleotidase/CD73 may regulate the extracellular adenosine 5'-monophosphate (AMP) and adenosine levels. Treatment with 1 microM APCP, a competitive ecto-5'-NT/CD73 inhibitor, caused a significant reduction of 30% in glioma cell proliferation. In addition, 100 microM adenosine increases cell proliferation by 36%, and the treatment with adenosine plus NBTI and dipyridamole, produced an additional and significant increase of on cell proliferation. The inhibitory effect on cell proliferation caused by APCP was reverted by co-treatment with NBTI and dipyridamole. AMP (1 mM and 3 mM) decreased U138MG glioma cell proliferation by 29% and 42%, respectively. Taken together, these results suggest the participation of ecto-5'-NT/CD73 in cell proliferation and that this process is dependent upon the enzyme's production of adenosine, a proliferative factor, and removal of AMP, a toxic molecule for gliomas.

    Topics: 5'-Nucleotidase; Adenosine; Adenosine Monophosphate; Affinity Labels; Animals; Brain Neoplasms; Cell Differentiation; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Glioma; Humans; Neoplasm Invasiveness; Neoplasm Metastasis; Rats; Thioinosine

2008
Adenosine uptake-dependent C6 cell growth inhibition.
    European journal of pharmacology, 2007, Dec-22, Volume: 577, Issue:1-3

    In C6 glioma cells, adenine nucleotides, especially AMP, and adenosine inhibited cell proliferation in time- and concentration-dependent manners. alpha,beta-methylene-ADP, an ecto-5'-nucleotidase inhibitor, suppressed the hydrolysis of AMP and reversed the inhibition of cell growth induced by AMP but not by adenosine. Adenosine deaminase eliminated both AMP- and adenosine-mediated growth inhibitions. 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, had little effect on the cell growth. Equilibrative nucleoside transporters, ENT-1 and ENT-2, were expressed in C6 cells by determining their mRNAs. ENT inhibitors, nitrobenzylthioinosine and dipyridamole, suppressed the uptake of [(3)H]adenosine into C6 cells, and attenuated AMP- or adenosine-mediated growth inhibition. Furthermore, an adenosine kinase inhibitor 5-iodotubercidin reversed the growth inhibition induced by AMP and adenosine. When uridine was added in the extracellular space, AMP- or adenosine-induced cell growth inhibition was completely reversed, suggesting that intracellular pyrimidine starvation would be involved in their cytostatic effects. These results indicate that extracellular adenine nucleotides inhibit C6 cell growth via adenosine, which is produced by ecto-nucleotidases including CD73 at the extracellular space and then incorporated into cells by ENT2. Intracellular AMP accumulation by adenosine kinase after adenosine uptake would induce C6 cell growth inhibition through pyrimidine starvation.

    Topics: 5'-Nucleotidase; Adenine Nucleotides; Adenosine; Adenosine Deaminase; Adenosine Diphosphate; Adenosine Kinase; Adenosine Monophosphate; Animals; Brain Neoplasms; Cell Count; Cell Line, Tumor; Cell Proliferation; Cyclic AMP; Dipyridamole; Equilibrative Nucleoside Transporter 1; Equilibrative-Nucleoside Transporter 2; Glioma; Hydrolysis; Rats; Reverse Transcriptase Polymerase Chain Reaction; Tetrazolium Salts; Thiazoles; Thioinosine; Uridine

2007
Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions.
    Journal of neurochemistry, 2000, Volume: 75, Issue:4

    Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.

    Topics: Adenine; Adenosine; Adenosine Triphosphate; AMP Deaminase; Animals; Carrier Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Equilibrative Nucleoside Transport Proteins; Equilibrative-Nucleoside Transporter 2; Formycins; Glioma; Hypoxanthine; Inosine; Iodoacetates; Nucleosides; Phosphodiesterase Inhibitors; Purines; Rats; Reverse Transcriptase Polymerase Chain Reaction; Sodium; Sodium Cyanide; Thioinosine; Tumor Cells, Cultured

2000