thioinosine has been researched along with Acquired-Immunodeficiency-Syndrome* in 3 studies
3 other study(ies) available for thioinosine and Acquired-Immunodeficiency-Syndrome
Article | Year |
---|---|
2',3'-dideoxycytidine permeation of the human erythrocyte membrane.
The mechanism by which 2,3'-dideoxycytidine, an inhibitor of HIV-I infectivity, permeates the cell membrane was investigated. The influx of ddCyd into human erythrocytes was nonconcentrative. The initial velocity of both ddCyd influx and efflux was, in contrast to compounds that permeate the cell membrane via the nucleoside transporter, a linear function of nucleoside concentration in the 1 microM to 10 mM range and relatively insensitive to temperature. Furthermore, potent inhibitors of nucleoside transporter and other nucleosides were found to inhibit ddCyd influx only partially or not at all suggesting that ddCyd permeates the human erythrocyte membrane predominantly by nonfacilitated diffusion. This unusual characteristic seems to be due to the lack of 3'-hydroxyl moiety of ddCyd which appears to be an important determinant for the nucleoside carrier specificity rather than to lipid solubility itself. As far as permeation of the cell membrane is concerned ddCyd shares these properties with 2',3'-dideoxythymidine and 3'-azido-3'-deoxythymidine. Topics: Acquired Immunodeficiency Syndrome; Biological Transport; Diffusion; Dipyridamole; Erythrocyte Membrane; Hot Temperature; Humans; In Vitro Techniques; Thioinosine; Zalcitabine | 1989 |
Uptake of 2',3'-dideoxyadenosine in human immunodeficiency virus-infected and noninfected human cells.
The uptake of 2',3'-dideoxyadenosine was examined in a human immunodeficiency virus (HIV) infected and uninfected T cell line (H9 cells), a B cell line (Namalwa), and in normal peripheral blood mononuclear cells. After a 10-minute incubation at ambient temperature, the intracellular 2',3'-dideoxyadenosine-derived radioactivity was 8- to 16-fold higher than the extracellular radioactivity. In metabolically inactive cells (0 degrees C), the intracellular and extracellular 2',3'-dideoxyadenosine-derived radioactivities were nearly equal. In infected and noninfected H9 cells, a large excess of p-nitrobenzylmercaptopurine riboside or pyrimidine nucleosides weakly inhibited the uptake of 2',3'-dideoxyadenosine (7-30%), whereas deoxycoformycin was a stronger inhibitor (50-80%). Purine nucleosides minimally enhanced the uptake (10-20%). The cellular uptake was not associated with the accumulation of dideoxyadenosine triphosphate. In normal peripheral blood mononuclear cells, the uptake of 2',3'-dideoxyadenosine was inhibited by all agents except 2'-deoxyadenosine (15% enhancement). In contrast to H9 cells, the formation and accumulation of dideoxyadenosine triphosphate paralleled the uptake of dideoxyadenosine. The results of these studies suggest that the major route of transport of 2',3'-dideoxyadenosine into cells is by simple diffusion and that different metabolic patterns exist among cell lines and normal peripheral blood mononuclear cells. An understanding of these cellular differences could aid in the development of therapeutic strategies directed against HIV. Topics: Acquired Immunodeficiency Syndrome; Antiviral Agents; Cell Line; Deoxyadenosines; Dideoxyadenosine; Diffusion; HIV; Humans; Nucleosides; Osmolar Concentration; Pentostatin; Temperature; Thioinosine | 1989 |
Genetic analysis of 2',3'-dideoxycytidine incorporation into cultured human T lymphoblasts.
In order to analyze the cellular determinants that mediate the action of 2',3'-dideoxycytidine, the growth inhibitory and cytotoxic effects and the metabolism of the dideoxynucleoside were examined in wild type human CEM T lymphoblasts and in mutant populations of CEM cells that were genetically deficient in either nucleoside transport or deoxycytidine kinase activity. Whereas 2',3'-dideoxycytidine at a concentration of 5 microM inhibited growth of the wild type CEM parental strain by 50%, two nucleoside transport-deficient clones were 4-fold resistant to the pyrimidine analog. The deoxycytidine kinase-deficient cell line was virtually completely resistant to growth inhibition by the dideoxynucleoside at a concentration of 1024 microM. An 80% diminished rate of 2',3'-[5,6-3H]dideoxycytidine influx into the two nucleoside transport-deficient lines could account for their resistance to the dideoxynucleoside, while the resistance of the deoxycytidine kinase-deficient cells to 2',3'-dideoxycytidine toxicity could be explained by a virtually complete failure to incorporate 2',3'-[5,6-3H]dideoxycytidine in situ. Two potent inhibitors of mammalian nucleoside transport, 4-nitrobenzylthioinosine and dipyridamole, mimicked the effects of a genetic deficiency in nucleoside transport with respect to 2',3'-dideoxycytidine toxicity and incorporation. These data indicate that the intracellular metabolism of 2',3'-dideoxycytidine in CEM cells is initiated by the nucleoside transport system and the cellular deoxycytidine kinase activity. Topics: Acquired Immunodeficiency Syndrome; Biological Transport; Cell Division; Cell Survival; Deoxycytidine; Deoxycytidine Kinase; Dipyridamole; Humans; Kinetics; Leukemia, Lymphoid; Mutation; Nucleosides; Phosphorylation; Phosphotransferases; T-Lymphocytes; Thioinosine; Tumor Cells, Cultured; Zalcitabine | 1988 |